Abstract
General Relativity (GR) was created in November 1915, and since its creation this theory has undergone many tests. The first realistic cosmological models were proposed in the works of Friedmann, written in the 1920s. For a long time, Friedmann’s cosmological works were actually banned in the Soviet Union due to philosophical reasons, since the models where the birth and evolution of the Universe occurs were considered ideologically unacceptable. Due to great achievements in relativity and cosmology and due to increasing interest in these branches of science in the last decades, we recall the development of relativistic astrophysics and contribution of Russian researchers to these studies. Since one of the world leaders in physical cosmology A. A. Friedmann passed away in September 1925, it is reasonable to outline the main achievements of physical cosmology over the past 100 years. We also discuss observational and theoretical achievements in confirmations of relativistic observational predictions for black holes, including the closest supermassive black hole in our Galactic Center. We outline the evolution of black hole shadow from the purely theoretical concept to observable quantities for supermassive black holes in Sgr A* and M87*.
Acknowledgements
References
[2] J. Earman, C. Glymour, Einstein and Hilbert: Two months in the history of general relativity,Archive for History of Exact Sciences 19 (3) (1978) 291–308.doi:10.1007/BF00357583.
[3] V. P. Vizgin, Y. A. Smorodinskii, From the equivalence principle to the equations of gravitation,Soviet Physics Uspekhi 22 (7) (1979) 291–308.doi:10.1070/PU1979v022n07ABEH005582.
[4] V. P. Vizgin, On the discovery of the gravitational field equations by Einstein and Hilbert: Newmaterials, Physics–Uspekhi 44 (12) (2001) 1283–1298.doi:10.1070/PU2004v047n06ABEH001817.
[5] A. A. Logunov, M. A. Mestvirishvili, V. A. Petrov, How were the Hilbert–Einstein equations dis-covered?, Physics–Uspekhi 47 (6) (2004) 1283–1298.doi:10.1070/PU2004v047n06ABEH001817.
[6] M. Bronstein, Republication of: Quantum theory of weak gravitational fields, General Relativityand Gravitation 47 (6) (2012) 267–283.doi:10.1007/s10714-011-1285-4.
[7] R. P. Feynman, Quantum theory of gravitation, Acta Physica Polonica XXIV (1963) 697–823.
[8] R. P. Feynman, Errata in “R. P. Feynman (Acta Physica Polonica, 24 (1963) 697)”, Acta PhysicaPolonica XXV (1964) 855a.
[9] R. Feynman, F. B. Mor ́ınigo, W. G. Wagner, Feynman lectures on gravitation, Addison-Wesley,Reading, MA, 1995.
[10] L. J. Garay, Quantum gravity and minimum length, International Journal of Modern Physics A10 (2) (1995) 145–165.doi:10.1142/s0217751x95000085.
[11] C. Kiefer, Quantum gravity, Oxford University Press, Oxford, 2012.
[12] J.-P. Luminet, The Wraparound Universe, AK Peters, Ltd., 2008.
[13] A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativit ̈atstheorie, Sitzungsberichteder K ̈oniglich Preußischen Akademie der Wissenschaften zu Berlin (1917) 142–152.
[14] A. Eddington, On the instability of Einstein’s spherical world, Monthly Notices of the RoyalAstronomical Society 90 (1930) 668–678.doi:10.1093/mnras/90.7.668.
[15] G. Gamow, The evolutionary universe, Scientific American 195 (3) (1956) 136–156.doi:10.1038/scientificamerican0956-136.
[16] G. Gamow, My world line: An informal autobiography, 1st Edition, Viking Press, 1970.
[17] M. Livio, Brilliant blunders: From Darwin to Einstein. Colossal mistakes by great scientists thatchanged our understanding of life and the universe, Simon & Schuster, New York, 2013.
[18] D. Simanek, Brilliant blunders: From Darwin to Einstein — Colossal mistakes by great scientiststhat changed our understanding of life and the universe, Physics Today 66 (8) (2013) 48.doi:10.1063/PT.3.2084.
[19] C. O’Raifeartaigh, M. O’Keeffe, W. Nahm, S. Mitton, Einstein’s 1917 static model of the universe:A centennial review, The European Physical Journal H 42 (3) (2017) 431–474.doi:10.1140/epjh/e2017-80002-5.
[20] C. O’Raifeartaigh, S. Mitton, Interrogating the legend of Einstein’s “biggest blunder”, Physics inPerspective 20 (2018) 318–341.doi:10.1007/s00016-018-0228-9.
[21] C. O’Raifeartaigh, Investigating the legend of Einstein’s ”biggest blunder”, Physics Today, Oc-tober 2018.doi:10.1063/PT.6.3.20181030a.
[22] A. Friedmann, ̈Uber die Kr ̈ummung des Raumes, Zeitschrift f ̈ur Physik 10 (1922) 377–386.doi:10.1007/BF01332580.
[23] A. Friedmann, ̈Uber die M ̈oglichkeit einer Welt mit konstanter negativer Kr ̈ummung des Raumes,Zeitschrift f ̈ur Physik 21 (1) (1924) 326–332.doi:10.1007/BF01328280.
[24] A. Friedmann, On the curvature of space, General Relativity and Gravitation 31 (12) (1999)1991–2000.doi:10.1023/a:1026751225741.
[25] A. Friedmann, On the possibility of a world with constant negative curvature of space, GeneralRelativity and Gravitation 31 (12) (1999) 2001–2008.doi:10.1023/A:1026755309811.
[26] A. Belenkiy, Alexander Friedmann and the origins of modern cosmology, Physics Today 65 (10)(2012) 38–43.doi:10.1063/PT.3.1750.
[27] V. Soloviev, How Friedmann shod Einstein,https://arxiv.org/abs/2204.10650v3, accessed:2025-04-13 (2022).
[28] V. Soloviev, How Friedmann shod Einstein, Institute of Computer Investigations, Moscow–Izhevsk, 2022 (in Russian).
[29] G. Lemaˆıtre, Un univers homog`ene de masse constante et de rayon croissant rendant compte dela vitesse radiale des n ́ebuleuses extra-galactiques, Annales de la Soci ́et ́e Scientifique de BruxellesA47 (1927) 49–59.
[30] E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae, Pro-ceedings of the National Academy of Sciences of the United States of America 15 (1929) 168–173.doi:10.1073/pnas.15.3.168.
[31] E. Hubble, M. L. Humason, The velocity–distance relation for isolated extragalactic nebulae,Proceedings of the National Academy of Sciences of the United States of America 20 (1934)264–268.doi:10.1073/pnas.20.5.264.
[32] V. Slipher, Further notes on spectrographic observations of nebulae and clusters, Publications ofthe American Astronomical Society 4 (1922) 284–286.
[33] D. MacDougal, J. Marcus, M. Bartusiak, Is it time to rename the Hubble constant?,https://www.astronomy.com/science/renaming-the-hubble-constant/, accessed: 2025-04-01 (2024).
[34] G. Lemaˆıtre, A homogeneous universe of constant mass and increasing radius accounting for theradial velocity of extra-galactic nebulœ, Monthly Notices of the Royal Astronomical Society 91(1931) 483–490.doi:10.1093/mnras/91.5.483.
[35] G. Lemaˆıtre, Republication of: A homogeneous universe of constant mass and increasing radiusaccounting for the radial velocity of extra-galactic nebulae, General Relativity and Gravitation45 (8) (2013) 1635–1646.doi:10.1007/s10714-013-1548-3.
[36] J.-P. Luminet, Editorial note to: Georges Lemaˆıtre, a homogeneous universe of constant mass andincreasing radius accounting for the radial velocity of extra-galactic nebulae, General Relativityand Gravitation 45 (8) (2013) 1619–1633.doi:10.1007/s10714-013-1547-4.
[37] P. J. E. Peebles, Impact of Lemaitre’s ideas on modern cosmology, in: A. Berger (Ed.), The BigBang and Georges Lemaˆıtre: Proceedings of a Symposium in honour of G. Lemaˆıtre fifty yearsafter his initiation of Big-Bang Cosmology, Louvain-Ia-Neuve, Belgium, 10–13 October 1983, 1stEdition, D. Reidel Publishing Co., Dordrecht, 1984, pp. 23–30.
[38] G. Lemaˆıtre, The beginning of the world from the point of view of quantum theory, Nature127 (3210) (1931) 706.doi:10.1093/mnras/91.5.483.
[39] G. Lemaˆıtre, Republication of: The beginning of the world from the point of view of quan-tum theory, General Relativity and Gravitation 43 (10) (2011) 2929–2930.doi:10.1007/s10714-011-1214-6.
[40] J.-P. Luminet, Editorial note to: Georges Lemaˆıtre, the beginning of the world from the pointof view of quantum theory, General Relativity and Gravitation 43 (10) (2011) 2911–2928.doi:10.1007/s10714-013-1547-4.
[41] H. Kragh, R. W. Smith, Who discovered the expanding universe?, History of Science 41 (2003)141–162.
[42] M. Bartusiak, The day we found the universe, 1st Edition, Pantheon Books, 2009.
[43] S. van den Bergh, The curious case of Lemaˆıtre’s equation no. 24, Journal of the Royal Astro-nomical Society of Canada 105 (2011) 151.[44] M. Livio, Lost in translation. Mystery of the missing text solved, Nature 479 (2011) 171–173.doi:10.1038/479171a.
[45] D. L. Block, Georges Lemaˆıtre and Stigler’s law of eponymy, in: R. D. Holder, S. Mitton (Eds.),Georges Lemaˆıtre: Life, Science and Legacy, Astrophysics and Space Science Library, Springer,Heidelberg–New York–Dordrecht–London, 2012, pp. 89–96.
[46] R. K. Merton, Priorities in scientific discovery: A chapter in the sociology of science, AmericanSociological Review 22 (6) (1957) 635–659.
[47] S. M. Stigler, Stigler’s law of eponymy, Transactions of the New York Academy of Sciences 39(1980) 147–158.
[48] V. I. Arnold, On teaching mathematics, Russian Mathematical Surveys 53 (1) (1998) 229–236.doi:10.1070/rm1998v053n01ABEH000005.
[49] D. Lambert, Einstein and Lemaˆıtre: Two friends, two cosmologies. . . ,https://inters.org/einstein-lemaitre, accessed: 2025-04-01.
[50] D. Aikman, Lemaˆıtre follows two paths to truth: The famous scientist, who isalso a priest, tells why he finds no conflict between science and religion, The NewYork Times, February 19, 1933,https://www.nytimes.com/1933/02/19/archives/lemaitre-follows-two-paths-to-truth-the-famous-physicist-who-is.html#, accessed:2025-04-01 (1933).
[51] A. Einstein, L. Infeld, Evolution of physics, State Publisher of Technical and Theoretical Liter-ature (Gostekhizdat), Moscow–Leningrad, 1948 (in Russian).
[52] I. Shklovsky, The train. Non-fictional stories, Novosti, Moscow, 1991 (in Russian).[53] M. Eigenson, Big universe, Soviet Academy of Sciences, Moscow–Leningrad, 1936 (in Russian).
[54] A. L. Zelmanov, Cosmology, in: Great Soviet Encyclopedia, 2nd Edition, Vol. 23, State ScientificPublisher Great Soviet Encyclopedia, Moscow, 1955, pp. 109–113 (in Russian).
[55] L. R. Graham, Science, philosophy, and human behavior in the Soviet Union, Columbia Univer-sity Press, New York, 1987.
[56] G. A. Wetter, Dialectic materialism. A historical and systematic survey of philosophy in theSoviet Union, Routledge and Kegan Paul, London, 1987.
[57] V. P. Vizgin, The nuclear shield in the “thirty-year war” of physicists against ignorant criti-cism of modern physical theories, Physics–Uspekhi 42 (12) (1999) 1259–1283.doi:10.1070/PU1999v042n12ABEH000670.
[58] A. Blokh, The Soviet Union in the interior of the Nobel Prizes, Fizmatlit, Moscow, 2005 (inRussian).
[59] G. A. Gamow, Expanding universe and the origin of elements, Physical Review 70 (7–8) (1946)572–573.doi:10.1103/PhysRev.70.572.2.
[60] G. A. Gamow, The evolution of the universe, Nature 162 (4122) (1948) 680- 682.doi:10.1038/162680a0.
[61] R. A. Alpher, R. Herman, Evolution of the universe, Nature 162 (1948) 774–775.doi:10.1038/162774b0.
[62] G. Lemaˆıtre, Cosmological application of relativity, Reviews of Modern Physics 21 (3) (1949)357–366.doi:10.1103/RevModPhys.21.357.
[63] G. A. Gamow, On relativistic cosmogony, Reviews of Modern Physics 21 (3) (1949) 367–373.doi:10.1103/RevModPhys.21.367.
[64] H. Bondi, T. Gold, The steady-state theory of the expanding universe, Monthly Notices of theRoyal Astronomical Society 108 (3) (1948) 252–270.doi:10.1093/mnras/108.3.252.
[65] F. Hoyle, A new model for the expanding universe, Monthly Notices of the Royal AstronomicalSociety 108 (5) (1948) 372–382.doi:10.1093/mnras/108.5.372.
[66] F. Hoyle, G. B. J. V. Narlikar, A different approach to cosmology: From a static universe throughthe big bang towards reality, Cambridge University Press, Cambridge, 2000.
[67] C. O’Raifeartaigh, B. McCann, W. Nahm, S. Mitton, Einstein’s steady-state theory: Anabandoned model of the cosmos, The European Physical Journal H 39 (5) (2014) 353–367.doi:10.1093/mnras/108.5.372.
[68] D. Castelvecchi, Einstein’s lost theory uncovered, Nature 506 (7489) (2014) 418–419.doi:10.1140/epjh/e2014-50011-x.
[69] T. A. Shmaonov, The method of absolute measurements of the effective temperature of radioemission with a low equivalent temperature, Instruments and Experimental Techniques 1 (1957)83–86 (In Russian).
[70] A. McKellar, Evidence for the molecular origin of some hitherto unidentified interstellar lines,Publications of the Astronomical Society of the Pacific 52 (307) (1940) 187–192.doi:10.1086/125159.
[71] P. J. E. Peebles, Lyman A. Page, Jr., R. B. Partridge, Finding the big bang, Cambridge UniversityPress, Cambridge, 2009.
[72] V. Trimble, Early photons from the early universe, New Astronomy Reviews 50 (11–12) (2006)844–849.doi:10.1016/j.newar.2006.09.003.
[73] A. Yakuta, A. Ilushin, Y. Ilushin, V. Kudryavtsev, Semyon Emmanuilovich Khaikin: Teacherand scientist, MTsNMO, Moscow, 2021 (in Russian).
[74] G. A. Gamow, Oral Interview on April 25 and 26, 1968. Location: Professor Gamow’s home,Boulder, Colorado. Interviewed by: Charles Weiner, Boulder, Colorado, available athttps://repository.aip.org/gamow-george-1968-april-25-and-26(April 1968).doi:10.1063/nbla.taqm.xohh.
[75] P. Kapitsa, Experiment, theory, practice. Articles and speeches, Nauka, Moscow, 1974, Ch.Alexander Alexandrovich Friedmann, pp. 208–209 (in Russian).
[76] Y. B. Zeldovich, The theory of the expanding Universe as originated by A. A. Friedmann, SovietPhysics Uspekhi 6 (1964) 475–494.doi:10.1070/PU1964v006n04ABEH003584.
[77] E. Tropp, V. Frenkel, A. Chernin, Alexander Alexandrovich Friedmann. Life and activity, Nauka,Moscow, 1988 (in Russian).
[78] E. Tropp, V. Frenkel, A. Chernin, Alexander A. Friedmann: The man who made the universeexpand, Cambridge University Press, Cambridge, U.K., 1993.
[79] E. B. Gliner, Algebraic properties of the energy-momentum tensor and vacuum-like states ofmatter, Soviet Physics JETP 22 (2) (1965) 378–382.
[80] E. B. Gliner, Inflationary universe and the vacuumlike state of physical medium, Physics–Uspekhi44 (1) (2002) 213–220.doi:10.1070/PU2002v045n02ABEH001108.[81] D. G. Yakovlev, A. D. Kaminker, Nearly forgotten cosmological concept of E. B. Gliner, Universe9 (1) (2023) 46.doi:10.3390/universe9010046.
[82] A. Chernin, Why is the universe expanding? On the 90th anniversary of E. B. Gliner (inRussian),https://ufn.ru/tribune/trib118.pdf, accessed: 2025-04-13 (2013).doi:10.3367/UFNr.2013.01.t11.
[83] N. A. Bahcall, X. Fan, The most massive distant clusters: DeterminingΩandσ8, AstrophysicalJournal 504 (1) (1998) 1–6.doi:10.1086/306088.
[84] N. A. Bahcall, X. Fan, A lightweight universe?, Proceedings of the National Academy of Sciencesof USA 95 (1998) 5956–5959.doi:10.1073/pnas.95.11.5956.
[85] S. Perlmutter, G. Aldering, G. Goldhaber, et al., Measurements ofΩandΛfrom 42 high-redshiftsupernovae, Astrophysical Journal 517 (1998) 565–586.doi:10.1086/307221.
[86] A. G. Riess, A. V. Filippenko, P. Challis, et al., Observational evidence from supernovae for anaccelerating Universe and a cosmological constant, Astronomical Journal 116 (1998) 1009–1038.doi:10.1086/300499.
[87] B. P. Schmidt, N. B. Suntzeff, M. M. Phillips, et al., The high-zsupernova search: Measuringcosmic deceleration and global curvature of the universe using type ia supernovae, AstrophysicalJournal 507 (1) (1998) 46–63.doi:10.1086/306308.
[88] M. Turner, Cosmological parameters, in: Second International Workshop on Particle Physics andthe Early Universe (COSMO-98). AIP Conference Proceedings, Vol. 666, American Institute ofPhysics, College Park, MD, USA, 1999, pp. 113–128.doi:10.1063/1.59381.
[89] M. Turner, Dark matter and dark energy in the universe, in: The Third Stromlo Symposium:The Galactic Halo. Astronomical Society of the Pacific Conference Series, Vol. 165, AstronomicalSociety of the Pacific, Orem, UT, USA, 1999, pp. 431–452.doi:10.48550/arXiv.astro-ph/9811454.[90] M. Turner, A. J. Tyson, Cosmology at the millennium, Reviews of Modern Physics 72 (2) (1999)S145–S164.doi:10.1103/RevModPhys.71.S145.
[91] N. A. Bahcall, J. P. Ostriker, S. Perlmutter, P. J. Steinhardt, The cosmic triangle: Revealing thestate of the universe, Science 284 (5419) (1999) 1481–1488.doi:10.1126/science.284.5419.1481.
[92] DESI Collaboration, Extended dark energy analysis using DESI DR2 BAO measurements,https://arxiv.org/pdf/2503.14743doi:10.48550/arXiv.2503.14743.
[93] P. G. Bergmann, An introduction to the theory of relativity, Prentice-Hall, Inc., New York, 1942.
[94] F. W. Dyson, A. S. Eddington, C. Davidson, A determination of the deflection of light by the sun’sgravitational field, from observations made at the total eclipse of May 29, 1919, PhilosophicalTransactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 220 (1920)291–333.doi:10.1098/rsta.1920.0009.
[95] J. Earman, C. Glymour, Relativity and eclipses: The British eclipse expeditions of 1919 andtheir predecessors, Historical Studies in the Physical Sciences 11 (1) (1980) 49–85.doi:10.2307/27757471.
[96] D. J. Kennefick, No shadow of a doubt: The 1919 eclipse that confirmed Einstein’s theory ofrelativity, Princeton University Press, Princeton, 2019.
[97] K. Hentschel, Erwin Finlay Freundlich and testing Einstein’s theory of relativity, Archive forHistory of Exact Sciences 47 (1994) 143–201.doi:10.1007/BF00394800.
[98] J. Eistensatedt, The curious history of relativity. How Einstein’s theory of gravity was lost andfound again, Princeton University Press, Princeton, 2006.
[99] December 11, 1931 Meeting of the Royal Astronomical Society, The Observatory 55 (1932) 1–10.[100] C. M. Will, The confrontation between general relativity and experiment, Living Reviews inRelativity 17 (2014) 4.doi:10.12942/lrr-2014-4.
[101] C. M. Will, Theory and experiment in gravitational physics, 2nd Edition, Cambridge UniversityPress, Cambridge, 2018.
[102] C. M. Will, N. Yunes, Is Einstein still right?, Oxford University Press, Oxford, 2020.
[103] R. Genzel, Nobel lecture: A forty-year journey, Reviews of Modern Physics 94 (2) (2023) 020501.doi:10.1103/RevModPhys.94.020501.
[104] D. Lynden-Bell, Galactic nuclei as collapsed old quasars, Nature 223 (5207) (1969) 690–694.doi:10.1038/223690a0.[105] J. M. Bardeen, Kerr metric black holes, Nature 226 (5240) (1970) 64–65.doi:10.1038/226064a0.
[106] D. Lynden-Bell, M. J. Rees, On quasars, dust and the galactic centre, Monthly Notices of theRoyal Astronomical Society 152 (1971) 461.doi:10.1093/mnras/152.4.461.
[107] L. M. Ozernoi, Failure of the supermassive black hole concept?, The Observatory 96 (1976)67–69.
[108] L. M. Ozernoi, Is there a massive black hole at the galactic center?, in: W. B. Burton (Ed.), Thelarge-scale characteristics of the galaxy, Vol. 84 of IAU Symposium, 1979, pp. 395–400.
[109] E. R. Wollman, T. R. Geballe, J. H. Lacy, C. H. Townes, D. M. Rank, NE II 12.8 micronemission from the galactic center. II, Astrophysical Journal Letters 218 (1977) L103–L107.doi:10.1086/182585.24
A. F. Zakharov
[110] J. H. Lacy, C. H. Townes, T. R. Geballe, D. J. Hollenbach, Observations of the motion anddistribution of the ionized gas in the central parsec of the galaxy. II, Astrophysical Journal 241(1980) 132–146.doi:10.1086/182585.
[111] J. H. Lacy, C. H. Townes, T. R. Geballe, D. J. Hollenbach, The nature of the central parsec ofthe Galaxy, Astrophysical Journal 262 (1982) 120–134.doi:10.1086/160402.
[112] E. Serabyn, J. H. Lacy, NE II observations of the galactic center: Evidence for a massive blackhole., Astrophysical Journal 293 (1985) 445–458.doi:10.1086/163250.
[113] M. K. Crawford, R. Genzel, A. I. Harris, et al., Mass distribution in the galactic centre, Nature315 (6019) (1985) 467–470.doi:10.1038/315467a0.
[114] M. J. Rees, The compact source at the galactic center, in: G. R. Riegler, R. D. Blandford (Eds.),The galactic center, Vol. 83 of American Institute of Physics Conference Series, AIP Advances,1982, pp. 166–176.doi:10.1063/1.33482.
[115] D. A. Allen, R. H. Sanders, Is the galactic centre black hole a dwarf?, Nature 319 (6050) (1986)191–194.doi:10.1038/319191a0.
[116] R. Genzel, C. H. Townes, Physical conditions, dynamics, and mass distribution in the center ofthe galaxy, Annual Review of Astronomy and Astrophysics 25 (1987) 377–423.doi:10.1146/annurev.aa.25.090187.002113.
[117] A. Eckart, R. Genzel, Observations of stellar proper motions near the Galactic Centre, Nature383 (1996) 415–417.doi:10.1038/383415a0.
[118] A. Eckart, R. Genzel, Stellar proper motions in the central 0.1 PC of the Galaxy, Monthly Noticesof the Royal Astronomical Society 284 (3) (1997) 576–598.doi:10.1093/mnras/284.3.576.
[119] A. M. Ghez, B. L. Klein, M. Morris, E. E. Becklin, High proper-motion stars in the vicinity ofsagittarius A*: Evidence for a supermassive black hole at the center of our galaxy, AstrophysicalJournal 509 (1998) 678–686.doi:10.1086/306528.
[120] R. Sch ̈odel, T. Ott, R. Genzel, et al., A star in a 15.2-year orbit around the supermassive blackhole at the centre of the Milky Way, Nature 419 (6908) (2002) 694–696.arXiv:astro-ph/0210426,doi:10.1038/nature01121.
[121] R. Genzel, A forty-year journey,arXiv:2102.13000,doi:10.48550/arXiv.2102.13000.
[122] A. M. Ghez, G. Duchˆene, K. Matthews, et al., The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: A paradox of youth, Astrophysical JournalLetters 586 (2) (2003) L127–L131.arXiv:astro-ph/0302299,doi:10.1086/374804.
[123] A. A. Nucita, F. De Paolis, G. Ingrosso, A. Qadir, A. F. Zakharov, Sgr A*: A laboratory to mea-sure the central black hole and stellar cluster parameters, The Publications of the AstronomicalSociety of the Pacific 119 (854) (2007) 349–359.arXiv:0705.0494,doi:10.1086/517934.
[124] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Apoastron shift constraints on darkmatter distribution at the Galactic Center, Physical Review 76 (6) (2007) 062001.arXiv:0707.4423,doi:10.1103/PhysRevD.76.062001.
[125] F. Eisenhauer, G. Perrin, S. Rabien, et al., Gravity: The AO-assisted, two-object beam-combinerinstrument for the VLTI, in: A. Richichi, F. Delplancke, F. Paresce, A. Chelli (Eds.), The powerof optical/IR interferometry: Recent scientific results and 2nd generation, 2008, pp. 431–444.doi:10.1007/978-3-540-74256-2_50.
[126] T. Paumard, G. Perrin, A. Eckart, R. Genzel, et al., Scientific prospects for VLTI in the galacticcentre: Getting to the Schwarzschild radius, in: A. Richichi, F. Delplancke, F. Paresce, A. Chelli(Eds.), The power of optical/IR interferometry: Recent scientific results and 2nd generation,2008, pp. 313–317.doi:10.1007/978-3-540-74256-2_38.
[127] Gravity Collaboration: R. Abuter, M. Accardo, A. Amorim, et al., First light for gravity: Phasereferencing optical interferometry for the very large telescope interferometer, Astronomy andAstrophysics 602 (2017) A94.arXiv:1705.02345,doi:10.1051/0004-6361/201730838.
[128] G. Bourdarot, F. Eisenhauer, Kilometer-baseline interferometry: Science drivers for the next generation instrument, in: M. B ́ethermin, K. Bailli ́e, N. Lagarde, J. Malzac, R. M. Ouazzani,J. Richard., O. Venot, A. Siebert (Eds.), SF2A-2024: Proceedings of the Annual Meeting ofthe French Society of Astronomy and Astrophysics, 2024, pp. 183–186, available athttps://sf2a.eu/proceedings/2024/2024sf2a.conf.183B.pdf.arXiv:2410.22063,doi:10.48550/arXiv.2410.22063.
[129] M. R. Morris, L. Meyer, A. M. Ghez, Galactic center research: Manifestations of the centralblack hole, Research in Astronomy and Astrophysics 12 (8) (2012) 995–1020.doi:10.1088/1674-4527/12/8/007.
[130] P. M. Plewa, S. Gillessen, F. Eisenhauer, et al., Pinpointing the near-infrared location of Sgr A*by correcting optical distortion in the NACO imager, Monthly Notices of the Royal AstronomicalSociety 453 (3) (2015) 3234–3244.arXiv:1509.01941,doi:10.1093/mnras/stv1910.
[131] S. Sakai, J. R. Lu, A. Ghez, et al., The galactic center: An improved astrometric reference framefor stellar orbits around the supermassive black hole, Astrophysical Journal 873 (1) (2019) 65.arXiv:1901.08685,doi:10.3847/1538-4357/ab0361.
[132] Gravity Collaboration: R. Abuter, A. Amorim, N. Anugu, et al., Detection of the gravitationalredshift in the orbit of the star S2 near the galactic centre massive black hole, Astronomy andAstrophysics 615 (2018) L15.arXiv:1807.09409,doi:10.1051/0004-6361/201833718.
[133] Gravity Collaboration: R. Abuter, A. Amorim, M. Baub ̈ock, et al., A geometric distance mea-surement to the galactic center black hole with 0.3% uncertainty, Astronomy and Astrophysics625 (2019) L10.arXiv:1904.05721,doi:10.1051/0004-6361/201935656.
[134] Gravity Collaboration: R. Abuter, M. Accardo, T. Adler, et al., Gravity and the galactic centre,The Messenger 178 (2019) 26–29.doi:10.18727/0722-6691/5168.
[135] T. Do, A. Hees, A. Ghez, et al., Relativistic redshift of the star S0-2 orbiting the galacticcenter supermassive black hole, Science 365 (6454) (2019) 664–668.arXiv:1907.10731,doi:10.1126/science.aav8137.
[136] S. Capozziello, M. Francaviglia, Extended theories of gravity and their cosmological and as-trophysical applications, General Relativity and Gravitation 40 (2–3) (2008) 357–420.arXiv:0706.1146,doi:10.1007/s10714-007-0551-y.
[137] A. F. Zakharov, S. Capozziello, F. De Paolis, G. Ingrosso, A. A. Nucita, The role of dark matterand dark energy in cosmological models: Theoretical overview, Space Science Reviews 148 (1–4)(2009) 301–313.doi:10.1007/s11214-009-9500-2.
[138] S. Capozziello, M. de Laurentis, Extended theories of gravity, Physics Reports 509 (4) (2011)167–321.arXiv:1108.6266,doi:10.1016/j.physrep.2011.09.003.
[139] V. Faraoni, S. Capozziello, Beyond Einstein gravity. A survey of gravitational theories for cosmol-ogy and astrophysics, Vol. 170, Springer, Dordrecht, 2011.doi:10.1007/978-94-007-0165-6.
[140] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Solar system constraints on Rngravity,Physical Review D 74 (10) (2006) 107101.arXiv:astro-ph/0611051,doi:10.1103/PhysRevD.74.107101.
[141] D. Borka, P. Jovanovi ́c, V. Borka Jovanovi ́c, A. F. Zakharov, Constraints on Rngravity fromprecession of orbits of S2-like stars, Physical Review D 85 (12) (2012) 124004.arXiv:1206.0851,doi:10.1103/PhysRevD.85.124004.
[142] A. F. Zakharov, D. Borka, V. Borka Jovanovi ́c, P. Jovanovi ́c, Constraints on Rngravity fromprecession of orbits of S2-like stars: A case of a bulk distribution of mass, Advances in SpaceResearch 54 (6) (2014) 1108–1112.arXiv:1407.0366,doi:10.1016/j.asr.2014.05.027.
[143] D. Borka, P. Jovanovi ́c, V. Borka Jovanovi ́c, A. F. Zakharov, Constraining the range of Yukawagravity interaction from S2 star orbits, Journal of Cosmology and Astroparticle Physics 11 (2013)050.arXiv:1311.1404,doi:10.1088/1475-7516/2013/11/050.
[144] A. F. Zakharov, P. Jovanovi ́c, D. Borka, V. Borka Jovanovi ́c, Constraining the range of Yukawagravity interaction from S2 star orbits II: Bounds on graviton mass, Journal of Cosmology and Astroparticle Physics 5 (2016) 045.arXiv:1605.00913,doi:10.1088/1475-7516/2016/05/045.
[145] A. F. Zakharov, P. Jovanovi ́c, D. Borka, V. Borka Jovanovi ́c, Trajectories of bright stars at thegalactic center as a tool to evaluate a graviton mass, in: European Physical Journal Web ofConferences, Vol. 125, EDP, 2016, p. 01011.doi:10.1051/epjconf/201612501011.[146] B. P. Abbott, et al., Observation of gravitational waves from a binary black hole merger, PhysicalReview Letters 116 (6) (2016) 061102.arXiv:1602.03837,doi:10.1103/PhysRevLett.116.061102.
[147] R. Abbott et al., Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Physical Review D 103 (12) (2021) 122002.arXiv:2010.14529,doi:10.1103/PhysRevD.103.122002.
[148] A. Hees, T. Do, A. M. Ghez, et al., Testing general relativity with stellar orbits around thesupermassive black hole in our galactic center, Physical Review Letters 118 (21) (2017) 211101.arXiv:1705.07902,doi:10.1103/PhysRevLett.118.211101.
[149] A. Hees, A. M. Ghez, T. Do, et al., Testing the gravitational theory with short-period starsaround our galactic center, arXiv e-prints (2017) arXiv:1705.10792.arXiv:1705.10792,doi:10.48550/arXiv.1705.10792.
[150] A. Hees, A. M. Ghez, T. Do, et al., Testing the gravitational theory with short-period stars aroundour galactic center, in: Proceedings of the 52nd Rencontres De Moriond Gravitation, La Thuile,Aosta Valley, Italy, March 25 – April 1, 2017, edited by E. Aug ́e, J. Dumarchez and J. Trˆan ThanhVˆan, The Association of IOC Recognised International Sports Federations, CNRS, 2017, pp. 283–286, available athttps://inspirehep.net/files/77c7cfb32b16e98d66f4fd6221379e64.
[151] S. Navas et al., Review of particle physics, Physical Review D 110 (3) (2024) 030001.doi:10.1103/PhysRevD.110.030001.
[152] A. F. Zakharov, P. Jovanovi ́c, D. Borka, V. Borka Jovanovi ́c, Different ways for graviton massevaluations, in: Proceedings of the 52nd Rencontres De Moriond Gravitation, La Thuile, AostaValley, Italy, March 25 – April 1, 2017, edited by E. Aug ́e, J. Dumarchez and J. Trˆan Thanh Vˆan,The Association of IOC Recognised International Sports Federations, CNRS, 2017, pp. 247–250,available athttps://inspirehep.net/files/77c7cfb32b16e98d66f4fd6221379e64.
[153] A. F. Zakharov, P. Jovanovi ́c, D. Borka, V. Borka Jovanovi ́c, Constraining the range of Yukawagravity interaction from S2 star orbits III: Improvement expectations for graviton mass bounds,Journal of Cosmology and Astroparticle Physics 2018 (4) (2018) 050.arXiv:1801.04679,doi:10.1088/1475-7516/2018/04/050.
[154] A. F. Zakharov, P. Jovanovi ́c, D. Borka, V. Borka Jovanovi ́c, Different ways to estimate gravitonmass, in: International Journal of Modern Physics Conference Series, Vol. 47, 2018, p. 1860096.arXiv:1712.08339,doi:10.1142/S2010194518600960.
[155] A. F. Zakharov, Constraints on tidal charge of the supermassive black hole at the GalacticCenter with trajectories of bright stars, European Physical Journal C 78 (8) (2018) 689.arXiv:1804.10374,doi:10.1140/epjc/s10052-018-6166-5.
[156] A. F. Zakharov, The black hole at the galactic center: Observations and models, Interna-tional Journal of Modern Physics D 27 (6) (2018) 1841009.arXiv:1801.09920,doi:10.1142/S0218271818410092.
[157] A. F. Zakharov, Tests of gravity theories with galactic center observations, InternationalJournal of Modern Physics D 28 (13) (2019) 1941003.arXiv:1901.08343,doi:10.1142/S0218271819410037.
[158] Gravity Collaboration: A. Amorim, M. Baub ̈ock, M. Benisty, et al., Scalar field effects on theorbit of S2 star, Monthly Notices of the Royal Astronomical Society 489 (4) (2019) 4606–4621.arXiv:1908.06681,doi:10.1093/mnras/stz2300.
[159] Gravity Collaboration: R. Abuter, A. Amorim, M. Baub ̈ock, et al., Detection of the Schwarzschildprecession in the orbit of the star S2 near the galactic centre massive black hole, Astronomy & Astrophysics 636 (2020) L5.arXiv:2004.07187,doi:10.1051/0004-6361/202037813.
[160] D. Borka, V. Borka Jovanovi ́c, S. Capozziello, et al., Estimating the parameters of extendedgravity theories with the Schwarzschild precession of S2 star, Universe 7 (11) (2021) 407.doi:10.3390/universe7110407.
[161] P. Jovanovi ́c, D. Borka, V. Borka Jovanovi ́c, A. F. Zakharov, Influence of bulk mass distributionon orbital precession of S2 star in Yukawa gravity, European Physical Journal D 75 (5) (2021)145.arXiv:2105.03403,doi:10.1140/epjd/s10053-021-00154-z.
[162] P. Jovanovi ́c, V. Borka Jovanovi ́c, D. Borka, A. F. Zakharov, Constraints on Yukawa gravityparameters from observations of bright stars, Journal of Cosmology and Astroparticle Physics03 (2023) 056.arXiv:2211.12951,doi:10.1088/1475-7516/2023/03/056.
[163] P. Jovanovi ́c, V. Borka Jovanovi ́c, D. Borka, A. F. Zakharov, Constraints on graviton mass fromSchwarzschild precession in the orbits of S-stars around the galactic center, Symmetry 16 (4)(2024) 397.arXiv:2404.09795,doi:10.3390/sym16040397.
[164] P. Jovanovi ́c, V. Borka Jovanovi ́c, D. Borka, A. F. Zakharov, Improvement of graviton massconstraints using Gravity’s detection of Schwarzschild precession in the orbit of S2 star aroundthe galactic center, Physical Review D 109 (6) (2024) 064046.arXiv:2305.13448,doi:10.1103/PhysRevD.109.064046.
[165] Gravity Collaboration: K. Abd El Dayem, R. Abuter, N. Aimar, et al., On the presence ofa fifth force at the galactic center, arXiv e-prints (2025) arXiv:2504.02908arXiv:2504.02908,doi:10.48550/arXiv.2504.02908.
[166] R. Ruffini, C. R. Arg ̈uelles, J. A. Rueda, On the core-halo distribution of dark matter in galaxies,Monthly Notices of the Royal Astronomical Society 451 (1) (2015) 622–628.arXiv:1409.7365,doi:10.1093/mnras/stv1016.
[167] E. A. Becerra-Vergara, C. R. Arg ̈uelles, A. Krut, et al., Hinting a dark matter nature of Sgr a* viathe S-stars, Monthly Notices of the Royal Astronomical Society: Letters 505 (1) (2021) L64–L68.doi:10.1093/mnrasl/slab051.
[168] A. F. Zakharov, Testing the galactic centre potential with S-stars, Monthly Notices of the RoyalAstronomical Society: Letters 513 (1) (2022) L6–L9.arXiv:2108.09709,doi:10.1093/mnrasl/slab111.
[169] A. F. Zakharov, Orbits of bright stars near the galactic center as a tool to test gravity theories,Moscow University Physics Bulletin 77 (2) (2022) 341–348.doi:10.3103/S0027134922021089.
[170] Gravity Collaboration: R. Abuter, N. Aimar, A. Amorim, et al., Mass distribution in the galacticcenter based on interferometric astrometry of multiple stellar orbits, Astronomy & Astrophysics657 (2022) L12.arXiv:2112.07478,doi:10.1051/0004-6361/202142465.
[171] Gravity Collaboration: K. Abd El Dayem, R. Abuter, N. Aimar, et al., Improving constraintson the extended mass distribution in the galactic center with stellar orbits, Astronomy & Astro-physics 692 (2024) A242.arXiv:2409.12261,doi:10.1051/0004-6361/202452274.
[172] Gravity Collaboration: A. Foschi, R. Abuter, K. Abd El Dayem, et al., Using the motion of S2to constrain vector clouds around Sgr A*, Monthly Notices of the Royal Astronomical Society530 (4) (2024) 3740–3751.doi:10.1093/mnras/stae423.
[173] R. Genzel, F. Eisenhauer, S. Gillessen, Experimental studies of black holes: Status and futureprospects, The Astronomy and Astrophysics Review 32 (1) (2024) 3.arXiv:2404.03522,doi:10.1007/s00159-024-00154-z.
[174] J. M. Bardeen, Timelike and null geodesics in the Kerr metric, in: Black Holes (Les AstresOcclus), Ed. by S. DeWitt and C. DeWitt-Morette, Gordon & Breach, New York, 1973, pp.215–239.
[175] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Measuring the black hole parametersin the galactic center with RADIOASTRON, New Astronomy 10 (6) (2005) 479–489.arXiv:astro-ph/0411511,doi:10.1016/j.newast.2005.02.007.
[176] A. F. Zakharov, F. De Paolis, A. A. Nucita, G. Ingrosso, Direct measurements of black holecharge with future astrometrical missions, Astronomy & Astrophysics 442 (3) (2005) 795–799.arXiv:astro-ph/0505286,doi:10.1051/0004-6361:20053432.
[177] A. F. Zakharov, F. De Paolis, G. Ingrosso, A. A. Nucita, Shadows as a tool to evaluate blackhole parameters and a dimension of spacetime, New Astronomy Reviews 56 (2-3) (2012) 64–73.doi:10.1016/j.newar.2011.09.002.
[178] A. F. Zakharov, Constraints on a charge in the Reissner–Nordstr ̈om metric for the black hole atthe galactic center, Physical Review D 90 (6) (2014) 062007.arXiv:1407.7457,doi:10.1103/PhysRevD.90.062007.
[179] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Shadow shapes around the black hole inthe galactic centre, in: H. V. Klapdor-Kleingrothaus, R. Arnowitt (Eds.), Dark matter in astro-and particle physics, Springer-Verlag Berlin, Heidelberg, 2006, pp. 77–90.
[180] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Observational features of black holes,in: 27th International Workshop on Fundamental Problems of High-Energy Physics and FieldTheory: Black Holes on Earth and in Space: Ideas and Facts, 2005.arXiv:gr-qc/0507118.
[181] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Shadows (mirages) around black holesand retro gravitational lensing, in: P. Chen, E. Bloom, G. Madejski, V. Petrosian (Eds.), 22ndtexas symposium on relativistic astrophysics, 2005, pp. 310–315.
[182] A. F. Zakharov, A. A. Nucita, F. De Paolis, G. Ingrosso, Retro gravitational lensing for SgrA* with Radiastron, in: G. Espositio, G. Lambiase, G. Marmo, G. Scarpetta, G. Vilasi (Eds.),General relativity and gravitational physics, Vol. 751 of American Institute of Physics ConferenceSeries, AIP Advances, 2005, pp. 227–229.doi:10.1063/1.1891560.
[183] A. F. Zakharov, Constraints on a tidal charge of the supermassive black hole in M87* with theEHT observations in April 2017, Universe 8 (3) (2022) 141.arXiv:2108.01533,doi:10.3390/universe8030141.
[184] A. F. Zakharov, Shadows around Sgr A* and M87* as a tool to test gravity theories, Astronomicaland Astrophysical Transactions 33 (3) (2022) 285–296.arXiv:2208.06805,doi:10.17184/eac.7531.
[185] A. F. Zakharov, Shadows of galactic centers: From supermassive black holes to naked singu-larities and wormholes, Physics of Particles and Nuclei 56 (2) (2025) 140–145.doi:10.1134/S1063779624701314.[186] A. F. Zakharov, Shadows and circular photon orbits: Consideration of some cases of generaliza-tions of Kerr–Newman black holes, Physics of Particles and Nuclei Letters 22 (3) (2025) 568–575.doi:10.1134/S1547477125700177.
[187] A. F. Zakharov, Galactic center shadows: Beyond the standard model, Physics of Atomic Nuclei88 (1) (2025) 151–167.doi:10.1134/S106377882570019X.
[188] L. I. Matveenko, The history of VLBI: Formation and development, International AcademicAssociation Journal N-176 (2007) 1–35 (in Russian), accessed: 2025-04-14.URLhttps://iaaras.ru/media/print/preprint-176.pdf
[189] L. I. Matveenko, Early VLBI in the USSR, Astronomische Nachrichten 328 (5) (2007) 411–419.doi:10.1002/asna.200710763.
[190] L. I. Matveenko, VLBI: Window into universe, Proceedings of the Institute of Applied Astronomyof the Russian Academy of Sciences (2019) 85–91 (in Russian).doi:10.32876/ApplAstron.48.85-91.
[191] L. I. Matveenko, A radio telescope the size of a globe, Nauka i Zhizn’ (Science and Life) (1973)25–32 (in Russian), accessed: 2025-04-14.URLhttps://www.nkj.ru/archive/1019/30340/
[192] L. I. Matveenko, Ultra-long-range radio interferometry, Mechanics, Control and Informatics 7 (5)(2015) 38–69 (in Russian), accessed: 2025-04-14.
URLhttp://www.iki.rssi.ru/books/2015iki50.pdf
[193] I. S. Shklovsky, From the history of the development of radio astronomy in the USSR, Newson Life, Science, and Technology. Cosmonautics, Astronomy, no. 11, Znanie, Moscow, 1982 (inRussian).
[194] I. S. Shklovsky, From the history of the development of radio astronomy in the USSR, Yanus-K,Moscow, 1996, pp. 293–330 (in Russian).
[195] L. I. Matveenko, N. S. Kardashev, G. B. Sholomitskii, Large base-line radio interferometers,Radiophysics and Quantum Electronics 8 (4) (1965) 461–463.doi:10.1007/BF01038318.[196] L. Gindilis, The Radio Astronomy Department. I. S. Shklovsky as the founder of Radio As-tronomy Department,http://comet.sai.msu.ru/radio/history.html(in Russian), accessed:2025-04-15 (2015).
[197] L. I. Matveenko, Very-long-baseline radio interferometry, Priroda (Nature) 7 (1977) 56–67 (inRussian).URLhttps://priroda.ras.ru/
[198] G. Spinardi, Science, technology, and the Cold War: The military uses of the Jodrell Bank radiotelescope, Cold War History 6 (3) (2006) 279–300.doi:10.1080/14682740600795428.URLhttp://iaaras.ru/library/paper/1958/
[199] M. I. Monastyrsky, Fifty years of friendship. Unlovely notes on the anniversary of Grigory Mar-gulis, Historical and Mathematical Research 13 (48) (2009) 317–323 (in Russian), accessed:2025-04-14.URLhttps://pyrkov-professor.ru/default.aspx?tabid=195&ArticleId=88
[200] R. Batchelor, D. L. Jauncey, K. J. Johnston, et al., The first global radio telescope, SovietAstronomy Letters 2 (5) (1976) 181–183.
[201] I. I. K. Pauliny-Toth, E. Preuss, A. Witzel, R. Genzel, et al., High-resolution observations ofcompact radio sources at 1.35 cm wavelength, Soviet Astronomy Letters 4 (1) (1978) 32–35.
[202] L. I. Matveenko, J. M. Moran, R. Genzel, TheH2O maser flare in Orion-A, Soviet AstronomyLetters 8 (6) (1982) 382–383.
[203] L. I. Matveenko, V. I. Kostenko, L. R. Kogan, et al., Observations of the W51H2O source withthe Crimea–Haystack radio interferometer, Soviet Astronomy Letters 4 (1) (1978) 29–32.
[204] V. I. Kostenko, L. I. Matveenko, Precision antenna of a space radio telescope, KosmicheskieIssledovaniia 20 (1) (1982) 141–151 (in Russian).
[205] L. B. Okun, The life and legacy of Pomeranchuk, in: I. Ya. Pomeranchuk and physics at the turnof the century, World Scientic, Singapore, 2003, pp. 3–20.doi:10.1142/9789812702883_0001.
[206] V. B. Berestetskii, Isaak Yakovlevich Pomeranchuk, Soviet Physics Uspekhi 10 (3) (1967) 409–418.doi:10.1070/PU1967v010n03ABEH003256.
[207] I. Pomeranchuk, On the maximal energy which the primary electrons of cosmic rays can haveon the earth’s surface due to radiation in the earth’s magnetic field, Journal of Physics USSR 2(1940) 65–70.
[208] D. D. Iwanenko, I. Pomeranchuk, On the maximal energy attainable in a betatron, PhysicalReview 65 (1944) 343.doi:10.1103/PhysRev.65.343.[209] L. A. Artsimovich, I. Pomeranchuk, The radiation of fast electrons in magnetic field, Journal ofPhysics USSR, 9 (1945) 267–276.
[210] G. Schott, Electromagnetic radiation and the mechanical reactions arising from it, being anAdams Prize Essay in the University of Cambridge, University of Cambridge, Cambridge, GreatBritain, 1912.
[211] D. W. Kerst, New induction acclerator generating 20 MeV, Physical Review 61 (1942) 93–94.doi:10.1103/PhysRev.61.93.2.
[212] F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, H. C. Pollock, Radiation from electrons in asynchrotron, Physical Review 71 (1947) 829–830.doi:10.1103/PhysRev.71.829.5.
[213] F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, H. C. Pollock, A 70-MeV synchrotron, Journalof Applied Physics 18 (1947) 810–818.doi:10.1063/1.1697845.[214] J. P. Blewett, Radiation losses in the induction electron accelerator, Physical Review 69 (1946)87–95.doi:10.1103/PhysRev.69.87.
[215] G. C. Baldwin, D. W. Kerst, Origin of synchrotron radiation, Physics Today 28 (1975) 9–11.doi:10.1063/1.3068762.
[216] H. C. Pollock, The discovery of synchrotron radiation, American Journal of Physics 51 (1983)278–280.doi:10.1119/1.13289.
[217] I. I. Gurevich, Isaak Yakovlevich Pomeranchuk (Leningrad, 1937–1940; Moscow, 1943–1945), in:Memories of I. Ya. Pomeranchuk, Nauka, Moscow, 1988, pp. 42–46 (in Russian).
[218] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics. New Millenniumedition, Basic Books, New York, 2010.
[219] J. P. Blewett, Synchrotron radiation — Early history, Journal of Synchrotron Radiation 5 (1998)135–139.doi:10.1107/S0909049597043306.
[220] G. Margaritondo, Who were the founders of synchrotron radiation? Historical facts and mis-conceptions, Journal of Vacuum Science & Technology A 40 (2022) 033204.doi:10.1116/6.0001686.
[221] A. Li ́enard, Champ ́electrique et magn ́etique produit par une charge concentr ́ee en un point etanim ́ee d’un mouvement quelconque, L’ ́Eclairage ́Electrique 16 (27) (1898) 5–14.
[222] E. Wiechert, Elektrodynamische Elementargesetze, Annalen der Physik 309 (4) (1901) 667–689.doi:10.1002/andp.19013090403.
[223] G. Margaritondo, Synchrotron light: A success story over six decades, La Rivista del NuovoCimento 40 (2017) 411–417.doi:10.1393/ncr/i2017-10139-3.
[224] G. Margaritondo, The evolution of a dedicated synchrotron light source, Physics Today 65 (2008)37–43.doi:10.1063/1.2930734.
[225] R. P. Godwin, Synchrotron radiation as a light source, Springer, 1969, Ch. 1, pp. 1–73.doi:10.1007/bfb0107300.
[226] I. S. Shklovsky, The current state of the question about the nature of the solar corona, SovietPhysics Uspekhi 30 (1946) 63–102.doi:10.3367/UFNr.0030.194609d.0063.
[227] V. L. Ginzburg, On solar radiation in the radio spectrum, Comptes Rendus (Doklady) del’Acad ́emie de Sciences de l’URSS 52 (1946) 491–494.
[228] Vitalij Lazarevich Ginzburg. On the 100th anniversary of his birth (in Russian),https://lebedev.ru/data/books/ginz.pdf, accessed: 2025-04-16 (2016).
[229] S. E. Khaikin, B. Chikhachev, Studies of the Sun’s radio emission by the Brazilian expedition ofthe USSR Academy of Sciences to observe the solar eclipse of May 20, 1947, Comptes Rendus(Doklady) de l’Acad ́emie de Sciences de l’URSS 58 (9) (1947) 1923–1926 (in Russian).
[230] S. E. Khaikin, B. Chikhachev, Studies of the Sun’s radio emission during the total solar eclipseof May 20, 1947, Bulletin of the Russian Academy of Sciences: Physics 12 (1) (1948) 38–43 (inRussian).
[231] I. S. Shklovsky, On the nature of the glow of the crab nebula, Doklady Akademii Nauk SSSR 90(1953) 983–986 (in Russian).
[232] H. Falcke, F. Melia, E. Agol, Viewing the shadow of the black hole at the galactic center,Astrophysical Journal 528 (2000) L13–L16.doi:10.1086/312423.
[233] W. Cash, A. Shipley, S. Osterman, M. Joy, Laboratory detection of X-ray fringes with a grazing-incidence interferometer, Nature 407 (2000) 160–162.doi:10.1038/35025009.
[234] N. White, Imaging black holes, Nature 407 (2000) 146–147.doi:10.1038/35025179.
[235] D. E. Holz, J. A. Wheeler, Retro-MACHOs:πin the sky?, Astrophysical Journal 578 (2002)330–334.doi:10.1086/342463.
[236] The Event Horizon Telescope Collaboration, First M87* event horizon telescope results: I. Theshadow of the supermassive black hole, Astrophysical Journal 875 (2017) L1 (17 pp.).doi:10.3847/2041-8213/ab0ec7.
[237] The Event Horizon Telescope Collaboration, First M87* event horizon telescope results: VII. Po-larization of the ring, Astrophysical Journal 910 (2021) L12 (48 pp).doi:10.3847/2041-8213/abe71d.
[238] The Event Horizon Telescope Collaboration, First M87* event horizon telescope results:VIII. Magnetic field structure near the event horizon, Astrophysical Journal 910 (2021) L13(43 pp).doi:10.3847/2041-8213/abe4de.
[239] The Event Horizon Telescope Collaboration, First sagittarius A* event horizon telescope results:I. The shadow of the supermassive black hole in the center of the Milky Way, AstrophysicalJournal Letters 930 (2022) L12 (21 pp).doi:10.3847/2041-8213/ac6674.
[240] M. De Laurentis, I. de Martino, R. Della Monica, The galactic center as a laboratory for theoriesof gravity and dark matter, Reports on Progress in Physics 86 (10) (2023) ID. 104901.doi:10.1088/1361-6633/ace91b.
[241] P. Bambhaniya, A. B. Joshi, D. Dey, P. S. Joshi, A. Mazumdar, T. Harada, K. Nakao, Relativisticorbits of S2 star in the presence of scalar field, The European Physical Journal C 84 (2024) 124.doi:epjc/s10052-024-12477-3.
[242] The Event Horizon Telescope Collaboration, First sagittarius A* event horizon telescope results:VII. Polarization of the ring, Astrophysical Journal 964 (2024) L25 (43 pp).doi:10.3847/2041-8213/ad2df0.
[243] The Event Horizon Telescope Collaboration, First sagittarius A* event horizon telescope results:VIII. Physical interpretation of the polarized ring, Astrophysical Journal 964 (2024) L26 (43 pp).doi:10.3847/2041-8213/ad2df1.
[244] S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory ofrelativity, John Wiley & Sons, 1972.
[245] S. Weinberg, The first three minutes: A modern view of the origin of the universe, 2nd Edition,Basic Books, 1993.
[246] S. Weinberg, Cosmology, Oxford University Press, USA, 2008.
[247] S. Weinberg, Lectures on astrophysics, 1st Edition, Cambridge University Press, 2020.
[248] S. Weinberg, To explain the world: The discovery of modern science, HarperCollins Publishers,New York, 2015.
[249] P. L. Kapitsa, Letter on Gumilevsky’s book on Janury 2, 1946,https://rgaspi-558.dlibrary.org/ru/nodes/16846-dokument-3-dok-3-pismo-kapitsy-o-knige-gumilevskogo#mode/inspect/page/2/zoom/5, accessed: 2025-04-26 (1946).
[250] K. M. Simonov, Through the eyes of a man of my generation. Reflections on Stalin, AgentstvoPechati Novosti, Moscow, 1988 (in Russian).
[251] V. Nemchinov, Against servility!, Literaturnaya Gazeta, October 4, 1947, No. 43 (2358) (1947)4, accessed: 2025-04-27 (in Russian).URLhttps://electro.nekrasovka.ru/books/6157753/pages/4
[252] Vitalij Lazarevich Ginzburg. On the 100th anniversary of his birth, RMP, Moscow, 2017 (inRussian).
[253] S. Shnol, Heroes, villains, conformists of domestic science, 4th Edition, URSS–LIBROCOM,Moscow, 2010 (in Russian).
[254] T. D. Lysenko et al., On the situation in biological science. Verbal Report Session of the LeninAll-Union Academy of Agricultural Sciences, OGIZ–SELKHOZGIZ, Moscow, 1948 (in Russian).
[255] P. Pringle, The murder of Nikolai Vavilov. The story of Stalin’s persecution of one of the greatestscientists of the twentieth century, Simon & Schuster, New York, 2008.
[256] Y. B. Khariton, V. B. Adamskii, Y. N. Smirnov, On the making of the Soviet hydrogen (thermonuclear) bomb, Uspekhi Fizicheskikh Nauk 166 (2) (1996) 201–205.doi:10.3367/UFNr.0166.199602f.0201.
[257] Y. B. Khariton, V. B. Adamsky, Y. A. Romanov, Y. N. Smirnov, I. E. Tamm through the eyes ofphysicists of Arzamas-16, in: Episodes from the past, RFNC VNIIEF, Sarov, 1999, pp. 119–131.
[258] G. A. Goncharov, American and Soviet H-bomb development programmes: Historical back-ground, Uspekhi Fizicheskikh Nauk 166 (10) (1996) 1095–1104.doi:10.3367/UFNr.0166.199610f.1095.
[259] G. A. Goncharov, On the history of creation of the Soviet hydrogen bomb, Uspekhi FizicheskikhNauk 167 (8) (1997) 903–912.doi:10.3367/UFNr.0167.199708j.0903.
[260] G. A. Goncharov, The extraordinarily beautiful physical principle of thermonuclear charge design(on the occasion of the 50th anniversary of the test of RDS-37 — The first Soviet two-stagethermonuclear charge), Uspekhi Fizicheskikh Nauk 175 (11) (2005) 1243–1252.doi:10.3367/UFNr.0175.200511h.1243.
[261] V. L. Ginzburg, Things of bygone days (memories of my participation in the Atomic Project),in: About science, about myself and about others, Fizmatlit, Moscow, 2001, pp. 354–362 (inRussian).
[262] H. Falcke with J. Romer, Light in the darkness. Black holes, the universe, and us, HarperOne,2021.
[263] H. Falcke, The road toward imaging a black hole: A personal perspective, Natural Sciences 2 (4)(2022).doi:10.1002/ntls.20220031.

