Аннотация
Используя аппарат обобщенной ренормализационной группы, мы вычисляем квантовые поправки к эффективному потенциалу в моделях α-аттракторов, описывающих инфляционную стадию расширения Вселенной. Продемонстрировано, что квантовые поправки приводят к изменению изначального минимума исходного классического потенциала, что можно интерпретировать как проявление космологической постоянной или темной энергии.
Поддерживающие организации
The authors are grateful to I. Buchbinder, S. Fedoruk, and A. Baushev for valuable discus-sions.
Библиографические ссылки
[1] A. H. Guth, The inflationary universe: A possible solution to the horizon and flatness problems,Physical Review D 23 (1981) 347–356.doi:10.1103/PhysRevD.23.347.
[2] A. A. Starobinsky, A new type of isotropic cosmological models without singularity, PhysicsLetters B 91 (1980) 99–102.doi:10.1016/0370-2693(80)90670-X.
[3] J. Martin, C. Ringeval, V. Vennin, Encyclopædia Inflationaris, Physics of the Dark Universe 5–6(2014) 75–235.arXiv:1303.3787,doi:10.1016/j.dark.2014.01.003.
[4] P. A. R. Ade et al., Improved constraints on primordial gravitational waves using Planck, WMAP,and BICEP/Keck observations through the 2018 observing season, Physical Review Letters127 (15) (2021) 151301.arXiv:2110.00483,doi:10.1103/PhysRevLett.127.151301.
[5] Y. Akrami et al., Planck 2018 results: X. Constraints on inflation, Astronomy & Astrophysics 641(2020) A10.arXiv:1807.06211,doi:10.1051/0004-6361/201833887.
[6] Y. Akrami, R. Kallosh, A. Linde, V. Vardanyan, Dark energy,α-attractors, and large-scale struc-ture surveys, Journal of Cosmology and Astroparticle Physics 06 (2018) 041.arXiv:1712.09693,doi:10.1088/1475-7516/2018/06/041.
[7] D. I. Kazakov, R. M. Iakhibbaev, D. M. Tolkachev, Leading all-loop quantum contribution to theeffective potential in general scalar field theory, Journal of High Energy Physics 04 (2023) 128.arXiv:2209.08019,doi:10.1007/JHEP04(2023)128.
[8] D. I. Kazakov, R. M. Iakhibbaev, D. M. Tolkachev, Leading all-loop quantum contribution to theeffective potential in the inflationary cosmology, Journal of Cosmology and Astroparticle Physics09 (2023) 049.arXiv:2308.03872,doi:10.1088/1475-7516/2023/09/049.
[9] R. Kallosh, A. Linde, D. Roest, Superconformal inflationaryα-attractors, Journal of High EnergyPhysics 11 (2013) 198.arXiv:1311.0472,doi:10.1007/JHEP11(2013)198.
[10] R. Kallosh, A. Linde, Cosmological attractors and asymptotic freedom of the inflaton field,Journal of Cosmology and Astroparticle Physics 06 (2016) 047.arXiv:1604.00444,doi:10.1088/1475-7516/2016/06/047.
[11] M. Galante, R. Kallosh, A. Linde, D. Roest, Unity of cosmological inflation attractors, Physical Re-view Letters 114 (14) (2015) 141302.arXiv:1412.3797,doi:10.1103/PhysRevLett.114.141302.
[12] M. Scalisi, Cosmologicalα-attractors and de Sitter landscape, Journal of High Energy Physics 12(2015) 134.arXiv:1506.01368,doi:10.1007/JHEP12(2015)134.
[13] R. Kallosh, A. Linde, Polynomialα-attractors, Journal of Cosmology and Astroparticle Physics04 (04) (2022) 017.arXiv:2202.06492,doi:10.1088/1475-7516/2022/04/017.
[14] K. Dimopoulos, C. Owen, Quintessential inflation withα-attractors, Journal of Cosmology andAstroparticle Physics 06 (2017) 027.arXiv:1703.00305,doi:10.1088/1475-7516/2017/06/027.
[15] S. R. Coleman, E. J. Weinberg, Radiative corrections as the origin of spontaneous symmetrybreaking, Physical Review D 7 (1973) 1888–1910.doi:10.1103/PhysRevD.7.1888.
[16] R. Jackiw, Functional evaluation of the effective potential, Physical Review D 9 (1974) 1686.doi:10.1103/PhysRevD.9.1686.
[17] N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, Nauka, Moscow,1957, English transl.: Introduction to the Theory of Quantized Fields, 3rd ed., Wiley, New York,1980.
[18] W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space,Communications in Mathematical Physics 15 (1969) 208–234.doi:10.1007/BF01645676.
[19] K. Hepp, Proof of the Bogolyubov–Parasiuk theorem on renormalization, Communications inMathematical Physics 2 (1966) 301–326.doi:10.1007/BF01773358.
[20] N. N. Bogoliubow, O. S. Parasiuk, ̈Uber die Multiplikation der Kausalfunktionen in der Quanten-theorie der Felder, Acta Mathematica 97 (1957) 227–266.
[21] R. Kallosh, A. Linde, Universality class in conformal inflation, Journal of Cosmology and As-troparticle Physics 07 (2013) 002.arXiv:1306.5220,doi:10.1088/1475-7516/2013/07/002.
[2] A. A. Starobinsky, A new type of isotropic cosmological models without singularity, PhysicsLetters B 91 (1980) 99–102.doi:10.1016/0370-2693(80)90670-X.
[3] J. Martin, C. Ringeval, V. Vennin, Encyclopædia Inflationaris, Physics of the Dark Universe 5–6(2014) 75–235.arXiv:1303.3787,doi:10.1016/j.dark.2014.01.003.
[4] P. A. R. Ade et al., Improved constraints on primordial gravitational waves using Planck, WMAP,and BICEP/Keck observations through the 2018 observing season, Physical Review Letters127 (15) (2021) 151301.arXiv:2110.00483,doi:10.1103/PhysRevLett.127.151301.
[5] Y. Akrami et al., Planck 2018 results: X. Constraints on inflation, Astronomy & Astrophysics 641(2020) A10.arXiv:1807.06211,doi:10.1051/0004-6361/201833887.
[6] Y. Akrami, R. Kallosh, A. Linde, V. Vardanyan, Dark energy,α-attractors, and large-scale struc-ture surveys, Journal of Cosmology and Astroparticle Physics 06 (2018) 041.arXiv:1712.09693,doi:10.1088/1475-7516/2018/06/041.
[7] D. I. Kazakov, R. M. Iakhibbaev, D. M. Tolkachev, Leading all-loop quantum contribution to theeffective potential in general scalar field theory, Journal of High Energy Physics 04 (2023) 128.arXiv:2209.08019,doi:10.1007/JHEP04(2023)128.
[8] D. I. Kazakov, R. M. Iakhibbaev, D. M. Tolkachev, Leading all-loop quantum contribution to theeffective potential in the inflationary cosmology, Journal of Cosmology and Astroparticle Physics09 (2023) 049.arXiv:2308.03872,doi:10.1088/1475-7516/2023/09/049.
[9] R. Kallosh, A. Linde, D. Roest, Superconformal inflationaryα-attractors, Journal of High EnergyPhysics 11 (2013) 198.arXiv:1311.0472,doi:10.1007/JHEP11(2013)198.
[10] R. Kallosh, A. Linde, Cosmological attractors and asymptotic freedom of the inflaton field,Journal of Cosmology and Astroparticle Physics 06 (2016) 047.arXiv:1604.00444,doi:10.1088/1475-7516/2016/06/047.
[11] M. Galante, R. Kallosh, A. Linde, D. Roest, Unity of cosmological inflation attractors, Physical Re-view Letters 114 (14) (2015) 141302.arXiv:1412.3797,doi:10.1103/PhysRevLett.114.141302.
[12] M. Scalisi, Cosmologicalα-attractors and de Sitter landscape, Journal of High Energy Physics 12(2015) 134.arXiv:1506.01368,doi:10.1007/JHEP12(2015)134.
[13] R. Kallosh, A. Linde, Polynomialα-attractors, Journal of Cosmology and Astroparticle Physics04 (04) (2022) 017.arXiv:2202.06492,doi:10.1088/1475-7516/2022/04/017.
[14] K. Dimopoulos, C. Owen, Quintessential inflation withα-attractors, Journal of Cosmology andAstroparticle Physics 06 (2017) 027.arXiv:1703.00305,doi:10.1088/1475-7516/2017/06/027.
[15] S. R. Coleman, E. J. Weinberg, Radiative corrections as the origin of spontaneous symmetrybreaking, Physical Review D 7 (1973) 1888–1910.doi:10.1103/PhysRevD.7.1888.
[16] R. Jackiw, Functional evaluation of the effective potential, Physical Review D 9 (1974) 1686.doi:10.1103/PhysRevD.9.1686.
[17] N. N. Bogoliubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, Nauka, Moscow,1957, English transl.: Introduction to the Theory of Quantized Fields, 3rd ed., Wiley, New York,1980.
[18] W. Zimmermann, Convergence of Bogolyubov’s method of renormalization in momentum space,Communications in Mathematical Physics 15 (1969) 208–234.doi:10.1007/BF01645676.
[19] K. Hepp, Proof of the Bogolyubov–Parasiuk theorem on renormalization, Communications inMathematical Physics 2 (1966) 301–326.doi:10.1007/BF01773358.
[20] N. N. Bogoliubow, O. S. Parasiuk, ̈Uber die Multiplikation der Kausalfunktionen in der Quanten-theorie der Felder, Acta Mathematica 97 (1957) 227–266.
[21] R. Kallosh, A. Linde, Universality class in conformal inflation, Journal of Cosmology and As-troparticle Physics 07 (2013) 002.arXiv:1306.5220,doi:10.1088/1475-7516/2013/07/002.

