Аннотация
Рассмотрена возможность использования синхротрона формы-8 в качестве замены Нуклотрона для ускорения поляризованных протонов и дейтронов в комплексе коллайдера NICA. Арки синхротрона размещены внутри туннеля коллайдера NICA. Представленный инжектор позволяет сохранять поляризацию и осуществлять инжекцию любого сорта частиц (p, d, ³He и др.) в коллайдерные кольца во всем диапазоне энергий. Благодаря своей форме кольцо работает в режиме спиновой прозрачности. Управление направлением поляризации осуществляется с помощью спинового навигатора, использующего слабые соленоидальные поля. Синхротрон также может использоваться в качестве накопительного кольца для высокоточных экспериментов с поляризованными пучками помимо применения в качестве инжектора для коллайдера. В работе приводятся результаты численного моделирования спиновой динамики при ускорении протонов и дейтронов.
Библиографические ссылки
[2] V. Abramov, A. Aleshko, V. Baskov, E. Boos, V. Bunichev, O. Dalkarov, R. El-Kholy, A. Galoyan,A. Guskov, V. Kim, et al., Possible studies at the first stage of the NICA collider operation withpolarized and unpolarized proton and deuteron beams, Physics of Particles and Nuclei 52 (6)(2021) 1044–1119.
[3] E. Syresin, A. Butenko, P. Zenkevich, S. Kolokolchikov, S. Kostromin, I. Meshkov, N. Mityanina,Y. Senichev, A. Sidorin, G. Trubnikov, Formation of polarized proton beams in the NICA Collider-Accelerator Complex, Physics of Particles and Nuclei 52 (5) (2021) 997–1017.doi:10.1134/s1063779621050051.
[4] E. Syresin, A. Butenko, Y. Filatov, S. Kolokolchikov, A. Kondratenko, M. Kondratenko, S. Kostro-min, O. Kozlov, I. Meshkov, N. Mityanina, Y. Senichev, A. Sidorin, G. Trubnikov, A. Tuzikov,P. Zenkevich, Conception of High Intensive Polarized Proton Beam Formation in NICA Collider,in: Proceedings of the 13th International Particle Accelerator Conference (IPAC’22), JACoWPublishing, Geneva, Switzerland, 2022, pp. 1822–1824,https://jacow.org/ipac2022/papers/wepopt002.pdf.doi:10.18429/JACoW-IPAC2022-WEPOPT002.
[5] V. Abazov, V. Abramov, L. Afanasyev, R. Akhunzyanov, A. Akindinov, I. Alekseev, A. Aleshko,V. Alexakhin, G. Alexeev, (SPD Collaboration), Technical Design Report of the Spin PhysicsDetector at NICA, Natural Science Review 1 (1) (2025) 1,https://nsr-jinr.ru/article/view/35.
[6] A. Kovalenko, A. Butenko, V. Mikhaylov, M. Kondratenko, A. Kondratenko, Y. Filatov, Spintransparency mode in the NICA collider with solenoid Siberian Snakes for proton and deuteronbeam, Journal of Physics: Conference Series 938 (2017) 012025.doi:10.1088/1742-6596/938/1/012025.
[7] Y. Filatov, A. Kovalenko, A. Butenko, E. Syresin, V. Mikhailov, S. Shimanskiy, A. Kondratenko,M. Kondratenko, Spin transparency mode in the NICA collider, European Physical Journal: Webof Conferences 204 (2019) 10014.doi:10.1051/epjconf/201920410014.
[8] Y. Senichev, The lattice with imaginaryγ-transition for the CERN Proton Synchrotron PS2,CARE-HHH-APD, CERN, Geneva, Switzerland, 2007.
[9] S. Vokal, A. D. Kovalenko, A. M. Kondratenko, M. A. Kondratenko, V. A. Mikhailov, Y. N. Fila-tov, S. S. Shimanskii, Program of polarization studies and capabilities of accelerating polarizedproton and light nuclear beams at the Nuclotron of the Joint Institute for Nuclear Research,Physics of Particles and Nuclei Letters 6 (2009).doi:10.1134/S1547477109010087.
[10] N. Golubeva, A. Kondratenko, Y. Filatov, A Jump in Spin Precession Frequency as a Method toPass Spin Resonance, in: Proceedings of the International Workshop “Deuteron-93”, 1974. p. 374.
[11] A. Kondratenko, M. Kondratenko, Y. Filatov, Compensation for particle beam depolarization ofspin resonance intersection at accelerators, Physics of Elementary Particles and Atomic NucleiLetters 1 (2004) 266–269.
[12] Y. Filatov, A. Butenko, A. Kondratenko, M. Kondratenko, A. Kovalenko, V. Mikhaylov,Acceleration of Polarized Proton and Deuteron Beams in Nuclotron at JINR, in: Pro-ceedings of the 8th International Particle Accelerator Conference (IPAC’17), JACoW Pub-lishing, Geneva, Switzerland, 2017, pp. 2349–2351,http://jacow.org/ipac2017/papers/tupva112.pdf,https://doi.org/10.18429/JACoW-IPAC2017-TUPVA112.doi:https://doi.org/10.18429/JACoW-IPAC2017-TUPVA112.
[13] Y. Filatov, A. Kovalenko, A. Butenko, A. Kondratenko, M. Kondratenko, V. Mikhaylov, Polarizedproton beam acceleration at the Nuclotron with the use of the solenoid Siberian Snake, Physicsof Particles and Nuclei 45 (2013) 12.doi:10.1134/S1063779614010274.
[14] A. Kondratenko, M. Kondratenko, Y. Filatov, Y. Derbenev, F. Lin, V. Morozov, Y. Zhang,Acceleration of polarized protons and deuterons in the ion collider ring of JLEIC, Journal ofPhysics: Conference Series 874 (2017) 012011.doi:10.1088/1742-6596/874/1/012011.
[15] Y. Derbenev, F. Lin, V. Morozov, Y. Zhang, A. Kondratenko, M. Kondratenko, Y. Filatov, Base-line Scheme for Polarization Preservation and Control in the MEIC Ion Complex, in: Proceedingsof the 6th International Particle Accelerator Conference (IPAC’15), USA, 2015, pp. 2301–2303.
[16] V. Morozov, Y. Derbenev, Y. Zhang, P. Chevtsov, A. Kondratenko, M. Kondratenko, Y. Filatov,Ion Polarization in the MEIC Figure-8 Ion Collider Ring, in: Proceedings of the 3rd InternationalParticle Accelerator Conference (IPAC’12), USA, 2012, pp. 2014–2016.
[17] H. G. Khodzhibagiyan, P. G. Akishin, A. V. Butenko, A. V. Bychkov, G. L. Kuznetsov,M. S. Novikov, E. V. Sergeeva, G. V. Trubnikov, E. S. Fischer, A. V. Shemchuk, Develop-ment of superconducting accelerator magnets at JINR, Natural Science Review 1 (1) (2024) 6,https://nsr-jinr.ru/article/view/33.
[18] Y. Senichev, A “resonant” lattice for a synchrotron with a low or negative momentum compactionfactor, KEK Preprint 97-40, 1997.
[19] Y. N. Filatov, A. M. Kondratenko, M. A. Kondratenko, Y. S. Derbenev, V. S. Morozov,Transparent spin method for spin control of hadron beams in colliders, Physical Review Let-ters 124 (2020) 194801,https://link.aps.org/doi/10.1103/PhysRevLett.124.194801.doi:10.1103/PhysRevLett.124.194801.
[20] Y. Filatov, A. Kondratenko, M. Kondratenko, Y. Derbenev, V. Morozov, A. Butenko, E. Syresin,E. Tsyplakov, Polarization control in spin-transparent hadron colliders by weak-field navigatorsinvolving lattice enhancement effect, The European Physical Journal C 81 (2021) 11.doi:10.1140/epjc/s10052-021-09750-0.
[21] Y. N. Filatov, Concept of spin transparency at the NICA Accelerator Complex, Physics of Particlesand Nuclei 56 (2025) 363.doi:10.1134/S1063779624701648.
[22] Y. N. Filatov, A. M. Kondratenko, M. A. Kondratenko, Y. S. Derbenev, V. S. Morozov, A. D. Ko-valenko, Spin response function technique in spin-transparent synchrotrons, The European Phys-ical Journal C 80 (2020) 778,https://api.semanticscholar.org/CorpusID:225451375.
[23] Y. N. Filatov, A. M. Kondratenko, M. A. Kondratenko, V. V. Vorobyov, S. V. Vinogradov,E. D. Tsyplakov, A. D. Kovalenko, A. V. Butenko, Y. S. Derbenev, V. S. Morozov, Hadronpolarization control at integer spin resonances in synchrotrons using a spin navigator, PhysicalReview Accelerators and Beams 24 (2021) 061001.doi:10.1103/PhysRevAccelBeams.24.061001.
[24] F. M ́eot, The ray-tracing code Zgoubi, Nuclear Instruments and Methods in Physics Research,Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 427 (1999) 353–356,https://api.semanticscholar.org/CorpusID:119781558.
[25] Y. Filatov, A. Kondratenko, N. Nikolaev, Y. Senichev, M. Kondratenko, S. Vinogradov, E. Tsy-plakov, A. Chernyshov, A. Butenko, S. Kostromin, V. Ladygin, E. Syresin, E. Butenko, I. Gury-leva, A. Melnikov, A. Aksentyev, Compensation of the effect of the imperfection of the Nu-clotron/JINR lattice on the proton polarization near an integer spin resonance (brief review),Journal of Experimental and Theoretical Physics Letters 120 (2025) 779–787.doi:10.1134/S0021364024603695.
[26] Y. Filatov, A. Kondratenko, N. Nikolaev, Y. Senichev, M. Kondratenko, S. Vinogradov, E. Tsy-plakov, A. Butenko, S. Kostromin, V. Ladygin, E. Syresin, I. Guryleva, A. Melnikov, A. Aksentyev,Proton-spin-flipping system based on orbit-steerer dipoles in the Nuclotron/JINR operating at theγG = 7 spin resonance, Journal of Experimental and Theoretical Physics Letters 118 (2023) 09.doi:10.1134/S0021364023602695

