Technical Design Report of the Spin Physics Detector at NICA: et al. (SPD  Collaboration)

Additional data

Submitted: 13.08.2024; Published 16.12.2024; Updated on 23.04.2025;
Views: 2345; Downloaded: 720

How to Cite

V. Abazov et al. (SPD  Collaboration). "Technical Design Report of the Spin Physics Detector at NICA" Natural Sci. Rev. 1 1 (2024)
https://doi.org/10.54546/NaturalSciRev.100101
V. Abazov1, V. Abramov2, L. Afanasyev1, R. Akhunzyanov1, A. Akindinov3, I. Alekseev3, A. Aleshko4, V. Alexakhin1, G. Alexeev1et al. (SPD  Collaboration)
A. Allakhverdieva1, A. Amoroso6, V. Andreev7, V. Andreev8, E. Andronov9, Yu. Anikin10, S. Anischenko11, A. Anisenkov12, V. Anosov1, E. Antokhin12, A. Antonov13, S. Antsupov13, A. Anufriev5, K. Asadova1, S. Ashraf14, V. Astakhov1, A. Aynikeev4, M. Azarkin7, N. Azorskiy1, A. Bagulya7, D. Baigarashev1,15, A. Baldin1, E. Baldina1, N. Barbashina16, A. Barnyakov12, S. Barsov17, A. Bartkevich11, V. Baryshevsky11, K. Basharina1, A. Baskakov5, V. Baskov7, M. Batista18, M. Baturitsky19, V. Bautin1, T. Bedareva12, S. Belokurova9, A. Belova1, E. Belyaeva1, A. Berdnikov13, Ya. Berdnikov13, A. Berezhnoy4, A. Berngardt10, Yu. Bespalov1, V. Bleko1, L. Bliznyuk19, D. Bogoslovskii1, A. Boiko13, A. Boikov1, M. Bolsunovskaya13, E. Boos4, V. Borisov1, V. Borsch10, D. Budkouski1, S. Bulanova17, O. Bulekov16, V. Bunichev4, N. Burtebayev15, D. Bychanok11, A. Casanova18, G. Cesar18, D. Chemezov1, L. Chen20, A. Chepurnov4, V. Chmill1, A. Chukanov1, A. Chuzo16, A. Danilyuk21, A. Datta1, D. Dedovich1, M. Demichev1, G. Deng20, I. Denisenko1, O. Denisov6, T. Derbysheva12, D. Derkach22, A. Didorenko1, M.-O. Dima1, A. Doinikov13, S. Doronin16, V. Dronik23, F. Dubinin16, V. Dunin1, A. Durum2, A. Egorov17, R. El-Kholy14, T. Enik1, D. Ermak11, D. Erofeev10, A. Erokhin12, D. Ezhov13, O. Fedin17, Ju. Fedotova11, G. Feofilov9, Yu. Filatov1,24, S. Filimonov10, V. Frolov1, K. Galaktionov9, A. Galoyan1, A. Garkun25, O. Gavrishchuk1, S. Gerasimov1, M. Gilts23, L. Gladilin1,4, G. Golovanov1, S. Golovnya2, V. Golovtsov17, A. Golubev3, S. Golubykh1, P. Goncharov1, A. Gongadze1, N. Greben1, A. Gregoryev16, D. Gribkov4, A. Gridin1, K. Gritsay1, D. Gubachev1, J. Guo20, Yu. Gurchin1, A. Gurinovich11, Yu. Gurov16, A. Guskov1,a, D. Gutierrez18, F. Guzman18, A. Hakobyan26, D. Han27, S. Harkusha19, Sh. Hu20, S. Igolkin9, A. Isupov1, A. Ivanov1, N. Ivanov1,26, V. Ivantchenko10, Sh. Jin20, S. Kakurin1, N. Kalinichenko9, Y. Kambar1, A. Kantsyrev3, I. Kapitonov1, V. Karjavine1, A. Karpishkov1,5, A. Katcin12, G. Kekelidze1, D. Kereibay1, S. Khabarov1, P. Kharyuzov1, H. Khodzhibagiyan1, E. Kidanov23, E. Kidanova23, V. Kim17, A. Kiryanov17, I. Kishchin23, E. Kokoulina1, A. Kolbasin7, V. Komarov1, A. Konak1, Yu. Kopylov1, M. Korjik11, M. Korotkov16, D. Korovkin1, A. Korzenev1, B. Kostenko1, A. Kotova1, A. Kotzinian26, V. Kovalenko9, N. Kovyazina1, M. Kozhin1, A. Kraeva16, V. Kramarenko1,4, A. Kremnev12, U. Kruchonak1,19, A. Kubankin23,24, O. Kuchinskaia10, Yu. Kulchitsky1,19, S. Kuleshov28,29, A. Kulikov1, V. Kulikov12, V. Kurbatov1, Zh. Kurmanaliev1,15, Yu. Kurochkin19, S. Kutuzov1, E. Kuznetsova17, I. Kuyanov12, E. Ladygin1, V. Ladygin1, D. Larionova13, V. Lebedev1, R. Lednicki1, M. Levchuk19, P. Li20, X. Li20, Y. Li27, A. Livanov1, A. Lobanov13, A. Lobko11, K. Loshmanova1, S. Lukashevich8, E. Luschevskaya3, A. L’vov7, I. Lyashko1, V. Lysan1, V. Lyubovitskij10, D. Madigozhin1, V. Makarenko11, N. Makarov9, R. Makhmanazarov10, V. Maleev17, D. Maletic30, A. Malinin16, A. Malkhasyan26, A. Maltsev1, N. Maltsev9, M. Malyshev17, O. Mamoutova13, A. Manakonov16, A. Marova9, M. Merkin4, I. Meshkov1, V. Metchinsky11, O. Minko1, Yu. Mitrankov13, M. Mitrankova13, A. Mkrtchyan26, H. Mkrtchyan26, R. Mohamed14, A. Morozikhin16, S. Morozova5, E. Mosolova17, V. Mossolov11, S. Movchan1, Y. Mukhamejanov1, A. Mukhamejanova1,15, E. Muzyaev13, D. Myktybekov1,15, S. Nagorniy1, M. Nassurlla15, P. Nechaeva7, M. Negodaev7, V. Nesterov3, M. Nevmerzhitsky25, G. Nigmatkulov16, D. Nikiforov1, V. Nikitin1, A. Nikolaev4, D. Oleynik1, V. Onuchin1, I. Orlov13, A. Orlova12, G. Ososkov1, D. Panzieri6,31, B. Parsamyan1, V. Pavlov1, P. Pavzderin13, M. Pedraza18, V. Perelygin1, D. Peshkov13, A. Petrosyan1, M. Petrov1, V. Petrov9, K. Petrukhin12, A. Piskun1, S. Pivovarov12, I. Polishchuk10, P. Polozov3, V. Polyanskii7, A. Ponomarev1, V. Popov1, V. Popov9, S. Popovich7, D. Prokhorova9, N. Prokofiev9, F. Prokoshin1, A. Puchkov9, I. Pudin1, E. Pyata12, V. Rasin32, F. Ratnikov22, V. Red’kov19, A. Reshetin32, S. Reznikov1, N. Rogacheva1, S. Romakhov1, A. Rouba11, V. Rudnev9, V. Rusinov3, D. Rusov1, V. Ryltsov3, N. Saduyev15, A. Safonov1, S. Sakhiyev15, K. Salamatin1, V. Saleev1,5, A. Samartsev1, E. Samigullin3, O. Samoylov1, E. Saprunov19, A. Savenkov1, A. Seleznev13, A. Semak2, D. Senkov12, A. Sergeev17, L. Seryogin4, S. Seryubin1, A. Shabanov32, A. Shahinyan26, A. Shavrin17, I. Shein2, A. Sheremeteva1, V. Shevchenko16, K. Shilyaev5, S. Shimansky1, S. Shinbulatov15, F. Shipilov22, A. Shipilova1,5, S. Shkarovskiy1, Dz. Shoukovy19, K. Shpakov7, I. Shreyber10, K. Shtejer1,18, R. Shulyakovsky25, A. Shunko1, S. Sinelshchikova1, A. Skachkova1, A. Skalnenkov17, A. Smirnov4, S. Smirnov16, A. Snesarev7, E. Soldatov16, A. Solin11, A. Solin jr.11, V. Solovtsov17, J. Song20, D. Sosnov17, A. Stavinskiy3, D. Stekacheva13, E. Streletskaya1, M. Strikhanov16, O. Suarez18, A. Sukhikh2, S. Sukhovarov1, V. Sulin7, R. Sultanov3, P. Sun20, D. Svirida3, E. Syresin1, V. Tadevosyan26, O. Tarasov1, E. Tarkovsky3, V. Tchekhovsky11, E. Tcherniaev10, A. Terekhin1, A. Terkulov7, V. Tereshchenko1, O. Teryaev1, P. Teterin16, A. Tishevsky1, V. Tokmenin1, N. Topilin1, P. Tsiareshka1,19, A. Tumasyan26, G. Tyumenkov8, E. Usenko1,32, L. Uvarov17, V. Uzhinsky1, Yu. Uzikov1, F. Valiev9, E. Vasilieva1, A. Vasyukov1, V. Vechernin9, A. Verkheev1, L. Vertogradov1, Yu. Vertogradova1, R. Vidal18, N. Voitishin1, I. Volkov1, P. Volkov1,4, A. Vorobyov1, H. Voskanyan26, H. Wang20, Y. Wang27, T. Xu20, A. Yanovich2, I. Yeletskikh1, N. Yerezhep15, S. Yurchenko9, A. Zakharov16, N. Zamiatin1, J. Zamora-Sa´a28,29, A. Zarochentsev9, A Zelenov17, E. Zemlyanichkina1, M. Zhabitsky1, J. Zhang20, Zh. Zhang27, A. Zhemchugov1, V. Zherebchevsky9, A. Zhevlakov1,10, N. Zhigareva3, J. Zhou20, X. Zhuang20, I. Zhukov1, N. Zhuravlev1, A. Zinin1, S. Zmeev7, D. Zolotykh1, E. Zubarev1, A. Zvyagina9, S. Gerassimov7
  • 1Joint Institute for Nuclear Research, Dubna 141980, Russia
  • 2Institute for High Energy Physics of National Research Center ”Kurchatov Institute”, Protvino 142284, Russia
  • 3National Research Center ”Kurchatov Institute”, Moscow 123182, Russia
  • 4Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University, Moscow 119991, Russia
  • 5Samara National Research University, Samara 443086, Russia
  • 6INFN Sezione di Torino, Torino 10125, Italy
  • 7Lebedev Physical Institute, Moscow 119991, Russia
  • 8Francisk Skorina Gomel State University, Gomel 246028, Belarus
  • 9St. Petersburg State University, St. Petersburg 198504, Russia
  • 10Tomsk State University, Tomsk 634050, Russia
  • 11Research Institute for Nuclear Problems of Belarusian State University, Minsk 220030, Belarus
  • 12Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
  • 13Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
  • 14Astronomy Department, Faculty of Science, Cairo University, Giza 12613, Egypt
  • 15Institute of Nuclear Physics, Almaty 480082, Kazakhstan
  • 16National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
  • 17Petersburg Nuclear Physics Institute of National Research Center ”Kurchatov Institute”, Gatchina 188300, Russia
  • 18Higher Institute of Technologies and Applied Sciences, Havana 10400, Cuba
  • 19B. I. Stepanov Institute of Physics of NAS, Minsk 220072, Belarus
  • 20China Institute of Atomic Energy, Beijing 102413, China
  • 21Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russia
  • 22HSE University, Moscow 101000, Russia
  • 23Belgorod State National Research University, Belgorod 308015, Russia
  • 24Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
  • 25Institute of Applied Physics of NAS, Minsk 220072, Belarus
  • 26A. I. Alikhanyan National Science Laboratory, Yerevan 0036, Armenia
  • 27Tsinghua University, Beijing 100084, China
  • 28Center for Theoretical and Experimental Particle Physics, Facultad de Ciencias Exactas, Universidad Andr´es Bello, Fern´andez Concha 700, Santiago, Chile
  • 29Millennium Institute for Subatomic Physics at the High-Energy Frontier (SAPHIR), Fern´andez Concha 700, Santiago, Chile
  • 30Institute of Physics Belgrade, University of Belgrade, Belgrade 11080, Serbia
  • 31Universit`a degli Studi del Piemonte Orientale ”Amedeo Avogadro”, Vercelli, Italy
  • 32Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
  • aavg@jinr.ru
DOI: 10.54546/NaturalSciRev.100101
Keywords: SPD, Spin Physics Detector, NICA, detector, computing
Topics: Physics , High Energy Physics (Experiment)
PDF

Abstract

The Spin Physics Detector Collaboration proposes to install a universal detector in the second interaction point of the NICA collider under construction (JINR, Dubna) to study the spin structure of the proton and deuteron and other spin-related phenomena using a unique possibility to operate with polarized proton and deuteron beams at a collision energy up to 27 GeV and a luminosity up to 1032 cm−2 s−1. As the main goal, the experiment aims to provide access to the gluon TMD PDFs in the proton and deuteron, as well as the gluon transversity distribution and tensor PDFs in the deuteron, via the measurement of specific single- and double-spin asymmetries using different complementary probes, such as charmonia, open charm, and prompt photon production processes. Other polarized and unpolarized physics is possible, especially at the first stage of NICA operation with reduced luminosity and collision energy of the proton and ion beams. This paper is dedicated exclusively to technical issues of the SPD setup construction.

Corrected:

5 February 2025 (the surname of one of the authors was initially misspelled (M. Bolsunovskya), the correct spelling is M. Bolsunovskaya).

23 April 2025 (the surname of one of the authors was initially misspelled (A. Seleznev), the correct spelling is A. Selezenev).

Acknowledgements

We thank M. Barnyakov, V. Bobrovnikov, S. Kononov, E. Kravchenko, A. Kutov, I. Ovtin,N. Podgornov, E. Shchavelev, A. Tkachenko, and E. Tomasi-Gustafsson for their valuablecontributions to the preparation of this document.We also thank our colleagues from scientific organizations in the Czech Republic, France,Italy, Poland, Ukraine, and South Africa for their contributions to the development of ourproject.This work was supported by ANID – Millennium Science Initiative Program – ICN2019 044(Chile); Grant No. 1240066 FONDECYT (Chile).The SPD Collaboration would like to thank the members of the SPD International DetectorAdvisory Committee Andrea Bressan (INFN Trieste and University of Trieste), Pasquale DiNezza (INFN-LNF), and Peter Hristov (CERN) who followed the SPD project in 2021–2022.

References

[1] V. M. Abazov, et al., Conceptual design of the Spin Physics Detector (January 2021).arXiv:2102.00442.
[2] A. Arbuzov, et al., On the physics potential to study the gluon content of proton and deuteronat NICA SPD, Prog. Part. Nucl. Phys. 119 (2021) 103858.arXiv:2011.15005,doi:10.1016/j.ppnp.2021.103858.
[3] V. V. Abramov, et al., Possible Studies at the First Stage of the NICA Collider Operationwith Polarized and Unpolarized Proton and Deuteron Beams, Phys. Part. Nucl. 52 (6) (2021)1044–1119.arXiv:2102.08477,doi:10.1134/S1063779621060022.
[4] Z. Igamkulov, M. Cruceru, A. B. Kurepin, A. G. Litvinenko, E. I. Litvinenko, V. F. Peresedov,Luminosity Measurement and Control at NICA, Phys. Part. Nucl. Lett. 16 (6) (2019) 744–753.doi:10.1134/S1547477119060190.
[5] I. N. Meshkov, Luminosity of an Ion Collider, Phys. Part. Nucl. 50 (6) (2019) 663–682.doi:10.1134/S1063779619060042.
[6] V. M. Abazov, G. D. Alexeev, Y. I. Davydov, V. L. Malyshev, V. V. Tokmenin, A. A. Piskun,Comparative analysis of the performance characteristics of mini-drift tubes with different design,Instruments and Experimental Techniques 53 (3) (2010) 356–361.
[7] V. M. Abazov, G. D. Alexeev, Y. I. Davydov, V. L. Malyshev, A. A. Piskun, V. V. Tokmenin,Coordinate accuracy of mini-drift tubes in detection of an induced signal, Instruments and Ex-perimental Techniques 53 (5) (2010) 648–652.
[8] PANDA Collaboration, Technical Design Report for the: PANDA Muon System (AntiProtonAnnihilations at Darmstadt). Strong Interaction Studies with Antiprotons (September 2012),https://panda.gsi.de/publication/re-tdr-2012-003.
[9] V. M. Abazov, et al., The Muon system of the run II D0 detector, Nucl. Instrum. Meth. A 552(2005) 372–398.arXiv:physics/0503151,doi:10.1016/j.nima.2005.07.008.
[10] P. Abbon, et al., The COMPASS experiment at CERN, Nucl. Instrum. Meth. A 577 (2007)455–518.arXiv:hep-ex/0703049,doi:10.1016/j.nima.2007.03.026.
[11] G. D. Alekseev, M. A. Baturitsky, O. V. Dvornikov, A. I. Khokhlov, V. A. Mikhailov, I. A.Odnokloubov, V. V. Tokmenin, The eight-channel ASIC bipolar transresistance amplifier D0MAMPL-8.3, Nucl. Instrum. Meth. A 462 (2001) 494–505.doi:10.1016/S0168-9002(01)00195-4.
[12] G. Alexeev, M. Baturitsky, O. Dvornikov, V. Mikhailov, I. Odnokloubov, V. Tokmenin, Theeight-channel fast comparator IC, Nucl. Instrum. Meth. A 423 (1) (1999) 157–162.doi:https://doi.org/10.1016/S0168-9002(98)01185-1.
[13] G. D. Alekseev, M. A. Baturitsky, O. V. Dvornikov, A. I. Khokhlov, V. A. Mikhailov, I. A.Odnokloubov, A. A. Shishkin, V. V. Tokmenin, S. F. Zhirikov, The D0 forward angle muonsystem front-end electronics design, Nucl. Instrum. Meth. A 473 (2001) 269–282.doi:10.1016/S0168-9002(01)00865-8.
[14] G. D. Alekseev, A. Maggiora, N. I. Zhuravlev, Digital Front-end Electronics for COMPASSMuon-Wall 1 Detector, JINR Preprint E13-2005-37, 2005.
[15] P. Bredy, F. P. Juster, B. Baudouy, L. Benkheira, M. Cazanou, Experimental and theoreticalstudy of a two phase helium high circulation loop, AIP Conf. Proc. 823 (1) (2006) 496–503.doi:10.1063/1.2202453.
[16] N. Dhanaraj, G. Tatkowski, Y. Huang, T. M. Page, M. J. Lamm, R. L. Schmitt, T. J. Peterson,An analytical approach to designing a thermosiphon cooling system for large scale superconduct-ing magnets, IOP Conference Series: Materials Science and Engineering 101 (1) (2015) 012142.doi:10.1088/1757-899X/101/1/012142.
[17] The SPD proto-collaboration, Conceptual design of the Spin Physics Detector.
[18] AFI Electronicshttps://afi.jinr.ru.
[19] HVSys web pagehttp://hvsys.ru.
[20] O. P. Gavrishchuk, V. E. Kovtun, T. V. Malykhina, Simulation Studies of the Moliere Radiusfor EM Calorimeter Materials, Problems of Atomic Science and Technology 136 (2021) 171–174.
[21] V. N. Azorskyi, N. O. Graphov, O. P. Gavrischuk, A. I. Maltsev, V. V. Tereshenko, Electro-magnetic calorimeter for the SPD experiment, Physics of Particles and Nuclei 52 (2021) 975,http://www1.jinr.ru/Pepan/v-52-4/49_azor_ann.pdf.
[22] O. P. Gavrishchuk, V. E. Kovtun, T. V. Malykhina, Simulation study of energy resolution of the electromagnetic shashlyk calorimeter for different of layers and absorber combinations, EastEuropean Journal of Physics 3 (2020) 73–80.[23] p-Terphenilhttp://omlc.ogi.edu/spectra/PhotochemCAD/html/003.html.
[24] POPOPhttp://omlc.ogi.edu/spectra/PhotochemCAD/html/077.html.
[25] Kuraray pagehttp://kuraraypsf.jp/psf/ws.html.
[26] IHEP pagehttp://exwww.ihep.su/scint/mold/product.htm.
[27] IHEP pagehttp://www.newchemistry.ru/material.php?id=12.
[28] Hamamatsu web pagehttps://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/index.html.
[29] AFI Electronics web pagehttps://afi.jinr.ru/ADC64.
[30] HVSys web pagehttp://hvsys.ru/images/data/news/3_small_1368802865.pdf.
[31] B. Wang, X. Chen, Y. Wang, D. Han, B. Guo, Y. Yu, The High-Rate Sealed MRPC to PromotePollutant Exchange in Gas Gaps: Status on the Development and Observations, Appl. Sciences11 (11) (2021) 4722.doi:10.3390/app11114722.
[32] Y. Wang, Y. Yu, Multigap Resistive Plate Chambers for Time of Flight Applications, Appl.Sciences 11 (1) (2020) 111.doi:10.3390/app11010111.
[33] A. Akindinov, et al., Latest results on the performance of the multigap resistive plate chamberused for the ALICE TOF, Nucl. Instrum. Meth. A 533 (2004) 74–78.doi:10.1016/j.nima.2004.07.004.
[34] V. Ammosov, et al., The HARP resistive plate chambers: Characteristics and physics perfor-mance, Nucl. Instrum. Meth. A 602 (2009) 639–643.doi:10.1016/j.nima.2008.12.213.
[35] The STAR TOF Collaboration, Proposal for a Large Area Time of Flight System for STAR,2004.
[36] J. Velkovska, et al., Multi-gap Resistive Plate Chambers: Time-of-Flight system of the PHENIXhigh-pT Detector. Conceptual Design Report.
[37] A. Golovin, et al., Technical Design Report of the Time of Flight System (TOF-700) BM@N,2017.
[38] Talk by E. Ladygin, S. Nagorniy, A. Semak,https://indico.jinr.ru/event/2616/contributions/15165/attachments/11660/19232/Semak_SPD_14.12.21.pdf.
[39] B. Wang, D. Han, Y. Wang, X. L. Chen, Y. Li, The CEE-eTOF wall constructed with new sealedMRPC, JINST 15 (08) (2020) C08022.doi:10.1088/1748-0221/15/08/C08022.
[40] L. Jinxin, Z. Lei, Y. Liujiang, L. Zhenyan, L. Shubin, A. Qi, Design of a prototype readoutelectronics with a few picosecond time resolution for MRPC detectors, Nucl. Instrum. Meth. A925 (2019) 53–59.doi:https://doi.org/10.1016/j.nima.2019.01.084.
[41] J. Wang, S. Liu, L. Zhao, X. Hu, Q. An, The 10-ps multitime measurements averaging TDCimplemented in an FPGA, IEEE Transactions on Nuclear Science 58 (4) (2011) 2011–2018.doi:10.1109/TNS.2011.2158551.
[42] N. Akopov, et al., Nucl. Instrum. Meth. A 479 (2002) 511,https://arxiv.org/abs/hep-ex/0209005.
[43] [LHC-B Collaboration], CERN-LHCC-2000-037, LHCb TDR 3, 7 September 2000.
[44] M. Buenerd, AMS RICH Collaboration, The RICH counter of the AMS experiment, Nucl. In-strum. Meth. A 502 (2003) 158,https://arxiv.org/abs/astro-ph/0211645.
[45] A.Yu. Barnyakov, et al., Nucl. Instrum. Meth. A 553 (2005) 70–75.
[46] T. Iijima, et al., Nucl. Instrum. Meth. A 548 (2005) 383–390.
[47] S. Nishida, et al., Aerogel RICH for the Belle II forward PID, Nucl. Instrum. Meth. A 766 (2014)28–31.
[48] A.Yu. Barnyakov, et al., Nucl. Instrum. Meth. A 595 (2008) 100–103.
[49] A. Katcin, Progress in the production of aerogel radiators for the RICH detectors in Novosi-birsk, TIPP2023, 4–8 September 2023, Cape Town, South Africa,https://indico.tlabs.ac.za/event/112/contributions/2775/attachments/1053/1418/tipp2023-katcin.pdf.
[50] G. Abramov, et al., Extracted electron and gamma beams in BINP, JINST 9 (2014) C08022.
[51] G. Abramov, et al., Measurement of the energy of electrons extracted from the VEPP-4M accel-erator, JINST 11 (2016) P03004.
[52] A. Barnyakov, et al., Nucl. Instrum. Meth. A 766 (2014) 235.
[53] A. Barnyakov, et al., Beam test of FARICH prototype with digital photon counter, Nucl. Instrum.Meth. A 732 (2013) 352–356.
[54] T. Frach, et al., The Digital Silicon Photomultiplier — Principle of Operation and IntrinsicDetector Performance, IEEE Nuclear Science Symposium Conference Record 28 (2009) 2009.
[55] J. Benitez, et al., Nucl. Instrum. Meth. A 595 (2008) 104.
[56] B. Dey, et al., Design and performance of the focusing DIRC detector, Nucl. Instrum. Meth. A775 (2015) 112–131.
[57] S. Iwata, et al., Particle identification performance of the prototype aerogel RICH counter for theBelle II experiment, Prog. Theor. Exp. Phys. 502 (2016) 033H01.doi:10.1093/ptep/ptw005.
[58] A. Barnyakov, Development of FARICH technique for the Super Charm-Tau Factory project,TIPP2023, 4–8 September 2023, Cape Town, South Africa,https://indico.tlabs.ac.za/event/112/contributions/2781/attachments/1081/1460/BarnyakovTIPP2023_pres.pdf.
[59] G. Bondarenko, et al., Nucl. Instrum. Meth. A 442 (2000) 187.
[60] Z. Sadygov, et al., Nucl. Instrum. Meth. A 504 (2003) 301.
[61] [DATASHEET] MPPC (Multi-Pixel Photon Counter) arrays. S13361-3050 series,https://www.hamamatsu.com/resources/pdf/ssd/s13361-3050_series_kapd1054e.pdf.
[62] A. Ferri, et al., Performance of a 64-channel, 3.2×3.2 cm2SiPM tile for TOF-PET application, Nucl. Instrum. Meth. A 824 (2016) 196–197.
[63] [DATASHEET] J-Series High PDE and Timing Resolution, TSV Package,https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf.
[64] A. N. Otte, et al., Characterization of three high efficiency and blue sensitive silicon photomul-tipliers, Nucl. Instrum. Meth. A 846 (2017) 106–125.
(2016) 2530–2532.doi:10.1016/j.nuclphysbps.2015.09.448.
[65] D. Durini, et al., Evaluation of the dark signal performance of different SiPM-technologies underirradiation with cold neutrons, Nucl. Instrum. Meth. A 835 (2016) 99–109.
[66] M. Y. Barnyakov, et al., Radiation hardness test of the Philips Digital Photon Counter withproton beam, Nucl. Instrum. Meth. A 824 (2016) 83–84.
[67] M. Calvi, et al., Single photon detection with SiPMs irradiated up to 1014cm−21-MeV-equivalentneutron fluence, Nucl. Instrum. Meth. A 922 (2019) 243–249.
[68] M. Yonenaga, et al., Performance evaluation of the HAPD in the Belle II Aerogel RICH counters,JPS Conf. Proc. 27 (2019) 012016.
[69] A. Barnyakov, et al., Investigation and development of microchannel plate phototubes, Nucl.Instrum. Meth. A 572 (2007) 404–407.
[70] A. Barnyakov, et al., Photomultiplier tubes with three MCPs, Nucl. Instrum. Meth. A 598 (2009)160–162.
[71] A. Barnyakov, et al., Test of microchannel plates in magnetic fields up to 4.5 T, Nucl. Instrum.Meth. A 845 (2017) 588–590.
[72] K. Inami, et al., Nucl. Instrum. Meth. A 560 (2006) 303.
[73] C. Ugur, et al., A 16 channel high resolution (<11 ps RMS) Time-to-Digital Converter in aField-Programmable Gate Array, JINST 7 (2012) C02004.
[74] F. Anghinolfi, et al., NINO: An ultra-fast and low-power front-end amplifier/discriminator ASICdesigned for the multigap resistive plate chamber, Nucl. Instrum. Meth. A 533 (2004) 183.
[75] R. Gao, et al., Development of scalable electronics for the TORCH time-of-flight detector, JINST10 (2015) C02028.
[76]http://omega.in2p3.fr/index.php/products.html.
[77] P. Fischer, et al., Fast Self Triggered Multi Channel Readout ASIC for Time and Energy Mea-surement, IEEE Transactions on Nuclear Science 56 (3) (2009) 1153–1158.
[78] I. Sacco, et al., PETA4: a multi-channel TDC/ADC ASIC for SiPM readout, JINST 8 (2013)C12013.
[79] I. Sacco, et al., A compact, high-density gamma-detection module for Time-of-Flight measure-ments in PET applications, Nucl. Instrum. Meth. A 824 (2016) 233–236.
[80] A. Argentieri, et al., Design and characterization of CMOS multichannel front-end electronicsfor silicon photomultipliers, Nucl. Instrum. Meth. A 652 (2011) 516.
[81] J. Bario, et al., Performance of VATA64HDR16 ASIC for medical physics applications based oncontinuous crystals and SiPMs, JINST 10 (2015) P12001.
[82] M. D. Rolo, et al., TOFPET ASIC for PET applications, JINST 8 (2013) C02050.
[83] T. M. Conneely, et al., The TORCH PMT: a close packing, multi-anode, long life MCP-PMTfor Cherenkov applications, JINST 10 (2015) C05003.
[84] A. Sergi, NA62 Spectrometer: A Low Mass Straw Tracker, Phys. Procedia 37 (2012) 530–534.doi:10.1016/j.phpro.2012.03.713.
[85] H. Nishiguchi, et al., Development of an extremely thin-wall straw tracker operational in vacuum– The COMET straw tracker system, Nucl. Instrum. Meth. A 845 (2017) 269–272.doi:10.1016/j.nima.2016.06.082.
[86] M. Anelli, et al., A facility to Search for Hidden Particles (SHiP) at the CERN SPS (April 2015).arXiv:1504.04956.
[87] M. Lee, The Straw-tube Tracker for the Mu2e Experiment, Nucl. Part. Phys. Proc. 273–275 (2016) 2530–2532.doi:10.1016/j.nuclphysbps.2015.09.448.
[88] V. Bychkov, et al., Construction and manufacture of large size straw-chambers of the COMPASSspectrometer tracking system, Part. Nucl. Lett. 111 (2002) 64–73.
[89] K. Platzer, W. Dunnweber, N. Dedek, M. Faessler, R. Geyer, C. Ilgner, V. Peshekhonov,H. Wellenstein, Mapping the large area straw detectors of the COMPASS experiment with X-rays, IEEE Trans. Nucl. Sci. 52 (2005) 793–798.doi:10.1109/TNS.2005.850971.
[90] V. Volkov, P. Volkov, T. Enik, G. Kekelidze, V. Kramarenko, V. Lysan, D. Peshekhonov, A. Solin,A. Solin, Straw Chambers for the NA64 Experiment, Phys. Part. Nucl. Lett. 16 (6) (2019) 847–858.doi:10.1134/S1547477119060554.
[91] E. Cortina Gil, et al., The Beam and detector of the NA62 experiment at CERN, JINST 12 (05)(2017) P05025.arXiv:1703.08501,doi:10.1088/1748-0221/12/05/P05025.
[92] D. Moraes, W. Bonivento, N. Pelloux, W. Riegler, The CARIOCA Front End Chip for the LHCbmuon chambers (January 2003).
[93] R. Veenhof, Garfield, a drift chamber simulation program, Conf. Proc. C 9306149 (1993) 66–71.
[94] R. Veenhof, GARFIELD, recent developments, Nucl. Instrum. Meth. A 419 (1998) 726–730.doi:10.1016/S0168-9002(98)00851-1.
[95] F. Hahn, F. Ambrosino, A. Ceccucci, H. Danielsson, N. Doble, F. Fantechi, A. Kluge, C. Lazze-roni, M. Lenti, G. Ruggiero, M. Sozzi, P. Valente, R. Wanke, NA62: Technical Design Document,Tech. rep., CERN, Geneva,https://cds.cern.ch/record/1404985(December 2010).
[96] G. F. Knoll, Radiation Detection and Measurement, 3rd Edition, John Wi-ley and Sons, New York, 2000,https://phyusdb.files.wordpress.com/2013/03/radiationdetectionandmeasurementbyknoll.pdf.
[97] U. Fano, Ionization yield of radiations. II. The fluctuations of the number of ions, Phys. Rev.72 (1) (1947) 26–29,https://cds.cern.ch/record/425303.
[98] H. Akira, M. Kimiaki, D. Tadayoshi, T. Tan, F. Yuzo, Fano factor in gaseous argon measuredby the proportional scintillation method, Nucl. Instrum. Meth. A 227 (2) (1984) 305–310.doi:https://doi.org/10.1016/0168-9002(84)90138-4.
[99] H. Schindler, Microscopic Simulation of Particle Detectors (Presented 13 Dec. 2012),https://cds.cern.ch/record/1500583.
[100] LTspiceSimulatorhttps://www.analog.com/ru/design-center/design-tools-and-calculators/ltspice-simulator.html.
[101] G. Iakovidis, VMM3a, an ASIC for tracking detectors, JPCS 1498 (1) (2020) 012051.doi:10.1088/1742-6596/1498/1/012051.
[102] V. N. Bychkov, et al., The large size straw drift chambers of the COMPASS experiment, Nucl.Instrum. Meth. A 556 (2006) 66–79.doi:10.1016/j.nima.2005.10.026.
[103] G. Iakovidis, VMM – An ASIC for micropattern detectors, EPJ Web Conf. 174 (2018) 07001.doi:10.1051/epjconf/201817407001.
[104] A. Rivetti, M. Alexeev, R. Bugalho, F. Cossio, TIGER: A front-end ASIC for timing and energymeasurements with radiation detectors, Nucl. Instrum. Meth. A 924 (2019) 181–186,https://www.sciencedirect.com/science/article/pii/S0168900218311197.doi:https://doi.org/10.1016/j.nima.2018.09.010.
[105] M. Ablikim, Z. An, J. Bai, B. Niklaus, Design and construction of the BESIII detector, Nucl. In-strum. Meth. A 614 (3) (2010) 345–399,https://www.sciencedirect.com/science/article/pii/S0168900209023870.doi:https://doi.org/10.1016/j.nima.2009.12.050.
[106] V. Bautin, M. Demichev, T. Enik, E. Kuznetsova, V. Maleev, R. Petti, S. Nasybulin, K. Sala-matin, D. Sosnov, A. Zelenov, VMM3 ASIC as a potential front end electronics solution forfuture Straw Trackers, Nucl. Instrum. Meth. A 1047 (2023) 167864.doi:10.1016/j.nima.2022.167864.
[107] V. Abramov, Single-Spin Asymmetry in the Reactionp↑+A(p)→π0+X, JPS Conf. Proc. 37
(2022) 020901.doi:10.7566/JPSCP.37.020901.
[108] A. A. Terekhin, The pp-scattering simulation for the Beam-Beam Counter at SPD NICA, Pro-ceedings of the XIX International Workshop DSPIN-2023.
[109] J. Adams, et al., The STAR Event Plane Detector, Nucl. Instrum. Meth. A 968 (2020) 163970.arXiv:1912.05243,doi:10.1016/j.nima.2020.163970.
[110] FERS-5200 Front-End Readout System,https://www.caen.it/subfamilies/fers-5200/.
[111] A. Zakharov, Material selection of the SPD Beam-Beam Counter scintillation detector prototype,Proceedings of the XXV International Baldin Seminar on High Energy Physics Problems, 2003.
[112] M. A. A. Torres, et al., Performance of BeBe, a proposed dedicated beam-beam monitoringdetector for the MPD-NICA experiment at JINR, JINST 17 (09) (2022) P09031.arXiv:2110.02506,doi:10.1088/1748-0221/17/09/P09031.
[113] A. V. Tishevskiy, Y. V. Gurchin, A. Y. Isupov, A. N. Khrenov, T. V. Kulevoy, V. P. Ladygin,P. A. Polozov, S. G. Reznikov, A. A. Terekhin, I. S. Volkov, Development of the scintillationdetector prototypes with SiPM readout for SPD at NICA, J. Phys. Conf. Ser. 1690 (1) (2020)012051.doi:10.1088/1742-6596/1690/1/012051.[114] I. Alekseev, et al., DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator,JINST 11 (11) (2016) P11011.arXiv:1606.02896,doi:10.1088/1748-0221/11/11/P11011.
[115] A. V. Tishevsky, et al., Scintillation Detector Prototype for a Beam–Beam Counter at NICASPD, Phys. Atom. Nucl. 85 (9) (2022) 1497–1500.doi:10.1134/S1063778822090381.
[116] A. V. Tishevskiy, Development of the SPD Beam-Beam Counter scintillation detector prototypewith FERS 5200 front-end readout system, in: Proceedings of the XIX International WorkshopDSPIN-2023, 2023.
[117] L. Rossi, P. Fischer, T. Rohe, N. Wermes, Pixel Detectors: From Fundamentals to Appli-cations, Particle Acceleration and Detection, Springer-Verlag, Berlin, 2006.doi:10.1007/3-540-28333-1.
[118] B. Abelev, et al., Technical Design Report for the Upgrade of the ALICE Inner Tracking System,J. Phys. G 41 (2014) 087002.doi:10.1088/0954-3899/41/8/087002.
[119] M. Mager, ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade, Nucl.Instrum. Meth. A 824 (2016) 434–438.doi:10.1016/j.nima.2015.09.057.
[120] Y. A. Murin, C. Ceballos, The Inner Tracking System for the MPD Setup of the NICA Collider,Phys. Part. Nucl. 52 (4) (2021) 742–751.doi:10.1134/S1063779621040444.
[121] Q. Chen, et al., LDLA14: a 14 Gbps optical transceiver ASIC in 55 nm for NICA multi purposedetector project, JINST 17 (01) (2022) C01027.doi:10.1088/1748-0221/17/01/C01027.
[122] Q. Chen, et al., A 13 Gbps 1:16 deserializer ASIC for NICA multi purpose detector project,JINST 17 (08) (2022) C08027.doi:10.1088/1748-0221/17/08/C08027.
[123] V. P. Kondratyev, N. A. Maltsev, Y. A. Murin, Identification Capability of the Inner TrackingSystem for Detecting D Mesons at the NICA-MPD Facility, Bull. Russ. Acad. Sci. Phys. 86 (8)(2022) 1005–1009.doi:10.3103/S1062873822080111.
[124] V. I. Zherebchevsky, V. P. Kondratiev, E. B. Krymov, T. V. Lazareva, N. A. Maltsev, A. O.Merzlaya, D. G. Nesterov, N. A. Prokofyev, G. A. Feofilov, Investigations of the new generationpixel detectors for ALICE experiment at LHC, Bull. Russ. Acad. Sci. Phys. 80 (8) (2016) 953–958.doi:10.3103/S1062873816080463.
[125] V. I. Zherebchevsky, V. P. Kondratiev, V. V. Vechernin, S. N. Igolkin, The concept of the MPDvertex detector for the detection of rare events in Au+Au collisions at the NICA collider, Nucl.Instrum. Meth. A 985 (2021) 164668.doi:10.1016/j.nima.2020.164668.
[126] L. Musa, S. Beole, ALICE tracks new territory, CERN Courier (June 2021).
[127] F. Reidt, Studies for the ALICE Inner Tracking System Upgrade, Ph.D. thesis, Heidelberg U.(February 2016).doi:10.11588/heidok.00020648.
[128] P. Yang, et al., Low-power priority Address-Encoder and Reset-Decoder data-driven readout for Monolithic Active Pixel Sensors for tracker system, Nucl. Instrum. Meth. A 785 (2015) 61–69.doi:10.1016/j.nima.2015.02.063.
[129] ARCADIA project (INFN)https://www.pg.infn.it/en/technological-research/arcadia-eng/.
[130] C. Neub ̈user, T. Corradino, G.-F. Dalla Betta, L. De Cilladi, L. Pancheri, Sensor Design Opti-mization of Innovative Low-Power, Large Area FD-MAPS for HEP and Applied Science, Front.in Phys. 9 (2021) 625401.arXiv:2011.09723,doi:10.3389/fphy.2021.625401.
[131] V. I. Zherebchevsky, et al., Experimental investigation of new ultra-lightweight support andcooling structures for the new Inner Tracking System of the ALICE Detector, JINST 13 (08)(2018) T08003.doi:10.1088/1748-0221/13/08/T08003.
[132] V. I. Zherebchevsky, S. N. Igolkin, E. B. Krymov, N. A. Maltsev, N. A. Makarov, G. A.Feofilov, Extra lightweight mechanical support structures with the integrated cooling sys-tem for a new generation of vertex detectors, Instrum. Exp. Tech. 57 (3) (2014) 356–360.doi:10.1134/S002044121402033X.
[133] A. Acker, et al., The CLAS12 Micromegas Vertex Tracker, Nucl. Instrum. Meth. A 957 (2020)163423.doi:10.1016/j.nima.2020.163423.
[134] Y. Giomataris, P. Rebourgeard, J. Robert, G. Charpak, Micromegas: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nucl. Instrum. Meth. A 376 (1)(1996) 29–35.doi:https://doi.org/10.1016/0168-9002(96)00175-1.
[135] M. Bianco, Micromegas detectors for the muon spectrometer upgrade of the ATLAS experiment,Nucl. Instrum. Meth. A 824 (2016) 496–500.doi:10.1016/j.nima.2015.11.076.
[136] M. Iodice, M. Alviggi, M. T. Camerlingo, V. Canale, M. Della Pietra, C. Di Donato, P. Iengo,F. Petrucci, G. Sekhniaidze, Small-pad Resistive Micromegas: Comparison of patterned embed-ded resistors and DLC based spark protection systems, J. Phys. Conf. Ser. 1498 (2020) 012028.doi:10.1088/1742-6596/1498/1/012028.
[137] I. Giomataris, R. De Oliveira, S. Andriamonje, S. Aune, G. Charpak, P. Colas, A. Giganon,P. Rebourgeard, P. Salin, Micromegas in a bulk, Nucl. Instrum. Meth. A 560 (2006) 405–408.arXiv:physics/0501003,doi:10.1016/j.nima.2005.12.222.
[138] P. Konczykowski, et al., Measurements of the Lorentz angle with a Micromegas detector in hightransverse magnetic fields, Nucl. Instrum. Meth. A 612 (2010) 274–277.doi:10.1016/j.nima.2009.10.105.
[139] G. Charles, Mise au point de d ́etecteurs micromegas pour le spectrom`etre CLAS12 au laboratoireJefferson, Ph.D. thesis, U. Paris-Sud 11, Dept. Phys., Orsay (2013).
[140] C. Adloff, et al., Construction and Commissioning of the CALICE Analog Hadron CalorimeterPrototype, JINST 5 (2010) P05004.arXiv:1003.2662,doi:10.1088/1748-0221/5/05/P05004.
[141] Scintillation materials: manufacturing and treatment, by UNIPLAST, Ltd., Vladimir, Russia.http://www.uniplast-vladimir.com/scintillation.
[142] FERS-5200 Boards.https://www.caen.it/subfamilies/fers-5200/.
[143] S. Agostinelli, et al., GEANT4–a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250–303.doi:10.1016/S0168-9002(03)01368-8.
[144] J. Allison, et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270.doi:10.1109/TNS.2006.869826.
[145] J. Allison, et al., Recent developments in Geant4, Nucl. Instrum. Meth. A 835 (2016) 186–225.doi:10.1016/j.nima.2016.06.125.
[146] Vladikavkaz Technological Center BASPIK web pagehttps://baspik.com.
[147] A. N. Sissakian, A. S. Sorin, V. D. Kekelidze, et al., The MultiPurpose Detector – MPD to studyHeavy Ion Collisions at NICA (Conceptual Design Report), Dubna, 2014.
[148] M. E. Dinardo, The pixel detector for the CMS phase-II upgrade, JINST 10 (04) (2015) C04019.doi:10.1088/1748-0221/10/04/C04019.
[149] G. Timoshenko, M. Paraipan, Formation of secondary radiation fields at NICA, Nucl. Instrum.Meth. B 267 (2009) 2866–2869.
[150] I. S. Gordeev, A. R. Krylov, M. Paraipan, G. N. Timoshenko, Justification of radiation safety inthe operation of the NICA complex, 2019 (in Russian).
[151] V. N. Buchnev, S. V. Kulikov, V. Yu. Schegolev, Regulation no. IP on the procedure of work inthe fields of ionizing radiation at JINR, 2001 (in Russian).
[152] NICA project documentation, ZAO ”Kometa”, Vol 5.7.2, 2019 (in Russian).
[153] B. M. Michelson, Event-Driven Architecture Overview. Patricia Seybold Group / Business-Driven ArchitectureSM, February 2, (2006) 1–8,http://soa.omg.org/Uploaded%20Docs/EDA/bda2-2-06cc.pdf.
[154] K. Etschberger, IXXAT Automation GmbH. Controller Area Network (CAN) Basics, Protocols,Chips and Applications. IXXAT Press, 2001. ISBN 3-00-007376-0.
[155] J. Chaize, A. G ̈otz, W. Klotz, J. Meyer, M. Perez, E. Taurel, P. Verdier, TANGO, 8th Inter-national Conference on Accelerator & Large Experimental Physics Control Systems, 2001, SanJose, California (JACoW, 2001).
[156] E. Gorbachev, V. Andreev, A. Kirichenko, D. Monakhov, S. Romanov, T. Rukoyatkina,G. Sedykh, V. Volkov, The Nuclotron and NICA control system development status, Phys.Part. Nucl. Lett. 13 (5) (2016) 573–578.doi:10.1134/S154747711605023X.
[157] WinCC-OA: Introduction for Newcomers,https://lhcb-online.web.cern.ch/ecs/PVSSIntro.htm.
[158] H. Boterenbrood, H. J. Burckhart, J. Cook, V. Filimonov, B. I. Hallgren, F. Varela, VerticalSlice of the ATLAS Detector Control System, 2001.doi:10.5170/CERN-2001-005.334.
[159] P. Abbon, et al., The COMPASS Setup for Physics with Hadron Beams, Nucl. Instrum. Meth.A 779 (2015) 69–115.arXiv:1410.1797,doi:10.1016/j.nima.2015.01.035.
[160] Common Workflow Language.https://www.commonwl.org.
[161] G. Ososkov, et al., Tracking on the BESIII CGEM inner detector using deep learning, ComputerResearch and Modeling 12(6) (2020) 1361–1381.
[162] P. Goncharov, et al., BM@N Tracking with Novel Deep Learning Methods, EPJ Web Conf. 226(2020) 03009.
[163] E. Shchavelev, et al., Global strategy of tracking on the basis of graph neural network for BES-IIICGEM inner detector, AIP Conference Proceedings 2377 (2021) 060001.
[164] A. Nikolskaia, et al., Local strategy of particle tracking with TrackNETv2 on the BES-III CGEMinner detector, AIP Conference Proceedings 2377 (2021) 060004.
[165] O. Bakina, et al., Deep learning for track recognition in pixel and strip-based particle detectors,JINST 17 (12) (2022) P12023.arXiv:2210.00599,doi:10.1088/1748-0221/17/12/P12023.
[166] P. Goncharov, et al., Ariadne: PyTorch library for particle track reconstruction using deeplearning, AIP Conference Proceedings 2377 (2021) 040004.
[167] M. Al-Turany, D. Bertini, R. Karabowicz, D. Kresan, P. Malzacher, T. Stockmanns, F. Uhlig,The FairRoot framework, J. Phys. Conf. Ser. 396 (2012) 022001.doi:10.1088/1742-6596/396/2/022001.
[168] G. Barrand, et al., GAUDI – A software architecture and framework for building HEP data pro-cessing applications, Comput. Phys. Commun. 140 (2001) 45–55.doi:10.1016/S0010-4655(01)00254-5.
[169] S. A. Merkt, R. M. Bianchi, J. Boudreau, P. Gessinger-Befurt, E. Moyse, A. Salzburger, V. Tsu-laia, Going standalone and platform-independent, an example from recent work on the ATLASDetector Description and interactive data visualization, EPJ Web Conf. 214 (2019) 02035.doi:10.1051/epjconf/201921402035.
[170] T. Sjostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel,C. O. Rasmussen, P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191
(2015) 159–177.arXiv:1410.3012,doi:10.1016/j.cpc.2015.01.024.
[171] B. Andersson, G. Gustafson, B. Nilsson-Almqvist, A Model for Low p(t) Hadronic Reactions,with Generalizations to Hadron–Nucleus and Nucleus–Nucleus Collisions, Nucl. Phys. B 281(1987) 289–309.doi:10.1016/0550-3213(87)90257-4.
[172] B. Nilsson-Almqvist, E. Stenlund, Interactions Between Hadrons and Nuclei: The Lund MonteCarlo, FRITIOF Version 1.6, Comput. Phys. Commun. 43 (1987) 387–397.doi:10.1016/0010-4655(87)90056-7.
[173] S. Bass, et al., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl.Phys. 41 (1998) 255–369.arXiv:nucl-th/9803035,doi:10.1016/S0146-6410(98)00058-1.
[174] M. Bleicher, et al., Relativistic hadron-hadron collisions in the ultrarelativistic quantum molec-ular dynamics model, J. Phys. G 25 (1999) 1859–1896.arXiv:hep-ph/9909407,doi:10.1088/0954-3899/25/9/308.
[175] J. Rauch, T. Schl ̈uter, GENFIT — a Generic Track-Fitting Toolkit, J. Phys. Conf. Ser. 608 (1)(2015) 012042.arXiv:1410.3698,doi:10.1088/1742-6596/608/1/012042.
[176] S. Gorbunov, I. Kisel, Reconstruction of decayed particles based on the Kalman filter, Tech. Rep.CBM-SOFT-note-2007-003, CBM Collaboration (2007).
[177] F. Stagni, A. Tsaregorodtsev, L. Arrabito, A. Sailer, T. Hara, X. Zhang, DIRAC in Large ParticlePhysics Experiments, J. Phys. Conf. Ser. 898 (9) (2017) 092020.doi:10.1088/1742-6596/898/9/092020.
[178] Offline Framework for the SPD experimenthttps://git.jinr.ru/nica/spdroot.
[179] CernVM File Systemhttps://cernvm.cern.ch/fs/.
[180] F. B. Megino, et al., PanDA: Evolution and Recent Trends in LHC Computing, Procedia Comput.Sci. 66 (2015) 439–447.doi:10.1016/j.procs.2015.11.050.
[181] M. Barisits, T. Beermann, F. Berghaus, et al., Rucio: Scientific data management., Comput.Softw. Big Sci. 3 (2019) 11.doi:https://doi.org/10.1007/s41781-019-0026-3.