Аннотация
Данный краткий обзор посвящён празднованию двух важнейших событий в квантовой физике: появлению концепции о конденсации Бозе-Эйнштейна (1925) и её экспериментальному подтверждению, которое установило, что конденсация действительно существует и возникает в жидком 4Не одновременно с появлением сверхтекучести ниже температуры λ-точки (1975).
Оба эти события тесно связаны с теорией сверхтекучести Н. Н. Боголюбова (1947), поскольку ключевой гипотезой этой теории является наличие конденсата в системе взаимодействующих бозонов. Таким образом, эксперименты, начатые в ОИЯИ (Дубна), подтвердили в 1975 году предсказание теории Боголюбова о том, что сверхтекучесть жидкого 4Не (He II) должна возникать одновременно с конденсатом Бозе-Эйнштейна.
Исправлено:
13 ноября 2025 (подписи к рисункам 1 и 2 были изменены)
26 ноября 2025 (были внесены изменения в формулы (53) и (55))
Поддерживающие организации
Библиографические ссылки
[1] A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsberichte der PreussischenAkademie der Wissenschaften I (1925) 3–14.
[2] F. London, On the Bose–Einstein condensation, Physical Review 54 (1938) 947–954.
[3] E. Schrödinger, Quantisierung als Eigenwertproblem — Erste Mitteilung, Annalen der Physik 79(1926) 361–376.
[4] M. Planck, Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum, Verhandlungender Deutschen Physikalischen Gesellschaft 2 (1900) 237–246.
[5] A. Einstein, ̈Uber einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt, Annalen der Physik 322 (1905) 132–148.
[6] I. A. Kvasnikov, Thermodynamics and Statistical Physics: Theory of Equilibrium Systems, Izdatelstvo MGU, Moscow, 1991.
[7] A. Einstein, Strahlungs-emission und -absorption nach der Quantentheorie, Verhandlungen der Deutschen Physikalischen Gesellschaft 18 (1916) 318–323.
[8] A. H. Compton, A Quantum Theory of the Scattering of X-Rays by Light Elements, The Physical Review (Second Series) 25 (5) (1923) 483–502.
[9] Gilbert N. Lewis, The conservation of photons, Nature 118 (2981) (1926) 874–875.
[10] S. N. Bose, Planck’s Gesetz und Lichtquantenhypothese, Zeitschrift für Physik 26 (1924) 168–171.S. N. Bose, The Man and His Work, Part 1: Collected Scientific Papers / Eds. C. K. Majumdar et al., S. N. Bose National Centre for Basic Science, Calcutta, 1994; Part II: Life, Lectures and Addresses, Miscellaneous Pieces, https://newweb.bose.res.in/Prof.S.N.Bose-Archive/BoseCentenaryPublications.
[11] M. Planck, The Theory of Heat Radiation, P. Blakiston’s Son and Co., Philadelphia, PA, 1914.
[12] A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsberichte der Preussischen Akademie der Wissenschaften XXII (1924) 261–267.
[13] I. A. Kvasnikov, Thermodynamics and Statistical Physics, Vol. 4: Quantum Statistics, IzdatelstvoURSS, Moscow, 2010.
[14] G. E. Uhlenbeck and L. Gropper, The equation of state of a non-ideal Einstein–Bose or Fermi–Dirac gas, Physical Review 41 (1932) 79–90.
[15] G. E. Uhlenbeck, Over statistische methoden in de theorie der quanta, Dissertation, Leiden,1927.
[16] B. Kahn and G. E. Uhlenbeck, On the theory of condensation, Physica 5 (1938) 399–415.
[17] P. Kapitza, Viscosity of liquid helium below theλ-point, Nature 141 (1938) 74.
[18] J. F. Allen and A. D. Misener, Flow of liquid helium II, Nature 141 (1938) 75.
[19] M. van den Berg, On boson condensation into an infinite number of low-lying levels, J. Math.Phys. 23 (1982) 1159–1161.
[20] M. van den Berg and J. T. Lewis, On generalized condensation in the free boson gas, Physica A110 (1982) 550–564.
[21] M. van den Berg, On condensation in the free-bosons gas and the spectrum of the Laplacian, J.Stat. Phys. 31 (1983) 623–637.[22] M. van den Berg, J. T. Lewis and J. V. Pul`e, A general theory of Bose–Einstein condensation,Helv. Phys. Acta 59 (1986) 1271–1288.
[23] M. van den Berg, J. T. Lewis and J. V. Pul`e, The large deviation principle and some models ofan interacting boson gas, Communications in Mathematical Physics 118 (1988) 61–85.
[24] M. van den Berg, T. C. Dorlas, J. T. Lewis and J. V. Pul`e, The pressure in the Huang–Yang–Luttinger model of an interacting boson gas, Communications in Mathematical Physics 128(1990) 231–245.[25] V. A. Zagrebnov and J.-B. Bru, The Bogoliubov model of weakly imperfect Bose gas, PhysicsReports 350 (2001) 291–434.
[26] R. M. Ziff, G. E. Uhlenbeck and M. Kac, The ideal Bose–Einstein gas, revisited, Physics ReportsC 32 (1977) 169–248.
[27] A. F. Verbeure, Many-Body Boson Systems: Half a Century Later, Springer-Verlag, Heidelberg,2011.
[28] K. Huang, C. N. Yang and J. M. Luttinger, Imperfect Bose gas with hard-sphere interactions,Physical Review 105 (1957) 776–784.
[29] J.-B. Bru and V. A. Zagrebnov, Exact phase diagram of the Bogoliubov weakly imperfect Bosegas, Physics Letters A 244 (1998) 371–376.
[30] M. Beau and V. A. Zagrebnov, The second critical density and anisotropic generalised conden-sation, Condensed Matter Physics 13 (2) (2010) 23003: 1–10.
[31] R. Seiringer and D. Ueltschi, Rigorous upper bound on the critical temperature of dilute Bosegases, Physical Review B 80 (2009) 014502.
[32] V. Betz and D. Ueltschi, Critical temperature of dilute Bose gases, Physical Review A 81 (2010)023611
[33] J.-B. Bru and V. A. Zagrebnov, Quantum interpretation of thermodynamic behaviour of theBogoliubov weakly imperfect Bose gas, Physics Letters A 247 (1998) 37–41.
[34] V. A. Zagrebnov, Non-conventional dynamical Bose condensation, Physics of Particles and Nu-clei, 52 (2) (2021) 202–238.
[35] D. J. Thouless, The Quantum Mechanics of Many Body Systems, Academic Press, New York,1961.
[36] T. C. Dorlas, J. T. Lewis and J. V. Pul`e, The full diagonal model of a Bose gas, Communicationsin Mathematical Physics 156 (1993) 37–65.
[37] J.-B. Bru and V. A. Zagrebnov, Exact solution of the Bogoliubov Hamiltonian for weakly im-perfect Bose gas, Journal of Physics A: Mathematical and General 31 (1998) 9377–9404.
[38] J.-B. Bru and V. A. Zagrebnov, On condensations in the Bogoliubov weakly imperfect Bose gas,Journal of Statistical Physics 99 (2000) 1297–1338.
[39] M. van den Berg, J. T. Lewis and Ph. de Smedt, Condensation in the imperfect boson gas,Journal of Statistical Physics 37 (1984) 697–707.
[40] J. Lauwers, A. Verbeure and V. A. Zagrebnov, Bose–Einstein condensation for homogeneousinteracting systems with a one-particle spectral gap, Journal of Statistical Physics 112 (2003)397–420.
[41] V. B. Priezzhev, Quasicristal model of liquid helium I (ground state), Acta Physica Polonica A45 (1974) 343–358.
[42] V. B. Priezzhev, Quasicristal model of liquid helium I (collective excitations), Acta PhysicaPolonica A 45 (1974) 359–369.
[43] N. N. Bogoliubov, About the theory of superfluidity, Izvestiya Akademii Nauk SSSR 11 (1947)77–90.
[44] N. N. Bogoliubov, On the theory of superfluidity, Journal of Physics USSR 11 (1947) 23–32.
[45] N. N. Bogoliubov, Energy levels of the imperfect Bose–Einstein gas, Bulletin of Moscow StateUniversity 7 (1947) 43–56.
[46] V. A. Zagrebnov, Phonon–phonon interaction in liquid helium, Moscow University Physics Bul-letin 26 (1) (1971) 54–58; Vestnik MGU, Seriya 3 Fizika, Astronomiya 1 (1971) 75–81 (in Rus-sian).
[47] V. A. Zagrebnov, Phonon interaction in quantum liquid (4He), Vestnik MGU, Seriya 3 Fizika,Astronomiya 5 (1971) 568–578 (in Russian).
[48] Zh. A. Kozlov, V. A. Parfenov and B. Sidzhimov, JINR Communication P3-7519, Dubna 1973.
[49] Zh. A. Kozlov, The spectrum of excitation and Bose condensate phenomena in liquid4He, Physicsof Elementary Particles and Atomic Nuclei 27 (1996) 1705–1751.
[50] P. C. Hohenberg and P. M. Platzman, High-energy neutron scattering from liquid4He, PhysicalReview 152 (1966) 198–200.
[51] R. A. Cowley and A. D. B. Woods, Neutron scattering from liquid helium at high energies,Physical Review Letters 21 (1968) 787–789.
[52] O. Harling, High-momentum-transfer neutron-liquid-helium scattering Bose condensation, Phys-ical Review Letters 24 (1970) 1046–1048.
[53] H. A. Mook, R. Sherm, and M. K. Wilkinson, Search for Bose–Einstein condensation in superfluid4He, Physical Review A 6 (1972) 2268–2271.
[54] H. W. Jackson, Reexamination of evidence for a Bose–Einstein condensate in superfluid4He,Physical Review A 10 (1974) 278–294.
[55] O. Penrose, On the quantum mechanics of helium II, Philosophical Magazine 42 (1951) 1373–1377.
[56] O. Penrose and L. Onsager, Bose–Einstein condensation and liquid helium, Physical Review 104(1956) 576–584.
[57] Zh. A. Kozlov, L. Aleksandrov, V. A. Zagrebnov, V. A. Parfenov and V. B. Priezzhev, Searchingof the Bose condesate in He II, JINR Preprint P4-7895, Dubna, 1974.
[58] L. Aleksandrov, V. A. Zagrebnov, Zh. A. Kozlov, V. A. Parfenov and V. B. Priezzhev, Highenergy neutron scattering and the Bose condensate in He II, Soviet Physics JETP 41 (1975)915–918.
[59] E. V. Dokukin, Zh. K. Kozlov, V. A. Parfenov and A. V. Puchkov, Investigation of the tem-perature dependence of the density of the Bose condensate in helium-4 in connection with thesuperfluidity phenomenon, Soviet Physics JETP 48 (1978) 1146–1149.
[60] L. van Hove, Correlations in space and time and Born approximation scattering in systems ofinteracting particles, Physical Review 95 (1954) 249–262.
[61] V. L. Aksenov and A. M. Balagurov, Principles of the Neutron Crystallography, LomonosovMSU, Moscow, 2023; the second edition, Fizmatlit, Moscow, 2025.
[62] L. Aleksandrov, JINR Preprint P5-6821, Dubna, 1972.
[63] L. Aleksandrov, JINR Preprints P5-7258 and P5-7259, Dubna, 1973.
[64] E. L. Andronikashvili, Soviet Physics JETP 16 (1946) 780, 18 (1948) 424.
[65] I. M. Khalatnikov, Theory of Superfluidity, Nauka, Moscow, 1971; An Introduction to the Theoryof Superfluidity, W. A. Benjamin, New York, 1965.
[66] K. Huang, Statistical Mechanics, John Wiley & Sons, New York, 1987.
[67] V. A. Zagrebnov and V. B. Priezzhev, About problem of Bose-condensate in He II, JINR PreprintP17-9634, Dubna, 1976.
[68] B. N. Esel’son et al., Quantum3He/4He Mixtures, Nauka, Moscow, 1973.
[69] D. S. Betts, An Introduction to Millikelvin Technology, Cambridge University Press, 1989, Ch. 2:Properties of fluid3He/4He mixtures.
[70] H. R. Glyde, Excitations in the quantum liquid4He: A review, Reports on Progress in Physics81 (2018) 014501 (43 pp).
[71] L. D. Landau, The theory of superfluidity of Helium II, Journal of Physics USSR 5 (1941) 71–100.
[72] L. D. Landau, On the theory of superfluidity of Helium II, Journal of Physics USSR 11 (1947)91–92.
[73] J.-B. Bru and V. A. Zagrebnov, Quantum interpretation of thermodynamic behaviour of theBogoliubov weakly imperfect Bose gas, Physics Letters A 247 (1998) 37–41.
[74] S. I. Vilchynskyy, A. I. Yakimenko, K. O. Isaieva and A. V. Chumachenko, The nature ofsuperfluidity and Bose–Einstein condensation: From liquid4He to dilute ultracold atomic gases(Review Article), Low Temperature Physics 39 (2013) 724–740.
[75] E. H. Lieb, R. Seiringer, J. P. Solovej, J. Yngvason, The Mathematics of the Bose Gas and ItsCondensation, Birkh ̈aser Verlag, Basel, 2005.
[76] J. T. Lewis and J. V. Pul`e, The equilibrium states of the free boson gas, Communications inMathematical Physics 36 (1974) 1–18.
[77] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, 2ndedition, Vol. 2: Equilibrium States, Models in Quantum Statistical Mechanics, Springer, NewYork–London–Paris, 1996.

