Аннотация
В статье описывается разработка компьютерного кода ZFITTER в контексте высокоточной проверки Стандартной модели в эпоху работы коллайдера LEP. Анализируются особенности кода, позволившие ему стать стандартным инструментом для теоретической интерпретации электрослабых наблюдаемых. Обсуждаются перспективы дальнейшего развития ZFITTER и его вклад в исследовательские проекты на будущих электрон-позитронных коллайдерах. Приводятся численные иллюстрации влияния сдвигов значений параметров и добавления новых результатов вычисления радиационных поправок более высоких порядков.
Поддерживающие организации
Библиографические ссылки
[1] S. Schael et al., Precision electroweak measurements on the Z resonance, Physics Reports 427 (2006) 257–454. arXiv:hep-ex/0509008, doi:10.1016/j.physrep.2005.12.006.
[2] G. Altarelli, R. Kleiss, C. Verzegnassi (Eds.), Z Physics at LEP-1, Proceedings of the Workshop, Geneva, Switzerland, Sept. 4–5, 1989. Vol. 1: Standard Physics, CERN Yellow Reports: Conference Proceedings, 1989. doi:10.5170/CERN-1989-008-V-1.
[3] D. Y. Bardin et al., Electroweak Working Group Report, in: Workshop Group on Precision Calculations for the Z Resonance (2nd meeting held Mar. 31, 3rd meeting held Jun. 13), 1997. arXiv:hep-ph/9709229.
[4] W. F. L. Hollik, Radiative corrections in the Standard Model and their role for precision tests of the electroweak theory, Fortschritte der Physik 38 (1990) 165–260. doi:10.1002/prop.2190380302.
[5] W. F. L. Hollik, Program WOH, unpublished.
[6] V. Novikov, L. Okun, A. N. Rozanov, M. Vysotsky, LEPTOP, Moscow, ITEP, Mar. 1995. arXiv: hep-ph/9503308.
[7] G. Montagna, F. Piccinini, O. Nicrosini, G. Passarino, R. Pittau, TOPAZ0: A program for computing observables and for fitting cross-sections and forward-backward asymmetries around the Z0 peak, Computer Physics Communications 76 (1993) 328–360. doi:10.1016/0010-4655(93) 90060-P.
[8] G. Montagna, O. Nicrosini, G. Passarino, F. Piccinini, TOPAZ0 2.0: A program for computing deconvoluted and realistic observables around the Z0 peak, Computer Physics Communications 93 (1996) 120–126. arXiv:hep-ph/9506329, doi:10.1016/0010-4655(95)00127-1.
[9] G. Montagna, O. Nicrosini, F. Piccinini, G. Passarino, TOPAZ0 4.0: A new version of a computer program for evaluation of deconvoluted and realistic observables at LEP-1 and LEP-2, Computer Physics Communications 117 (1999) 278–289. arXiv:hep-ph/9804211, doi:10.1016/S0010-4655(98)00080-0.
[10] D. Y. Bardin et al., ZFITTER: An analytical program for fermion pair production in e+e− annihilation, May 1992. https://lib-extopc.kek.jp/preprints/PDF/1992/9207/9207126.pdf, arXiv:hep-ph/9412201.
[11] D. Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, T. Riemann, ZFITTER v.6.21: A semianalytical program for fermion pair production in e+e− annihilation, Computer Physics Communications 133 (2001) 229–395. arXiv:hep-ph/9908433, doi:10.1016/ S0010-4655(00)00152-1.
[12] The LEP Electroweak Working Group. https://lepewwg.web.cern.ch/lepewwg.
[13] A. Akhundov, A. Arbuzov, S. Riemann, T. Riemann, The ZFITTER project, Physics of Particles and Nuclei 45 (3) (2014) 529–549. arXiv:1302.1395, doi:10.1134/S1063779614030022.
[14] R. P. Feynman, M. Gell-Mann, Theory of the Fermi interaction, Physical Review 109 (1958) 193–198. doi:10.1103/PhysRev.109.193.
[15] E. C. G. Sudarshan, R. E. Marshak, Chirality invariance and the universal Fermi interaction, Physical Review 109 (1958) 1860–1862. doi:10.1103/PhysRev.109.1860.2.
[16] L. Michel, Interaction between four half spin particles and the decay of the µ meson, Proceedings of the Physical Society, Section A 63 (1950) 514–531. doi:10.1088/0370-1298/63/5/311.
[17] T. Kinoshita, A. Sirlin, Muon decay with parity nonconserving interactions and radiative corrections in the two-component theory, Physical Review 107 (1957) 593–599. doi:10.1103/PhysRev. 107.593.
[18] T. Kinoshita, A. Sirlin, Radiative corrections to Fermi interactions, Physical Review 113 (1959) 1652–1660. doi:10.1103/PhysRev.113.1652.
[19] G. Passarino, M. J. G. Veltman, One loop corrections for e+e− annihilation into µ+µ− in the Weinberg model, Nuclear Physics B 160 (1979) 151–207. doi:10.1016/0550-3213(79)90234-7.
[20] G. ’t Hooft, M. J. G. Veltman, Scalar one loop integrals, Nuclear Physics B 153 (1979) 365–401. doi:10.1016/0550-3213(79)90605-9.
[21] D. Bardin, ZBIZON: A program package for the precision calculation of observables or the process e+e− → F+F− around the Z peak, L3 Internal Note 679, Sept. 1989.
[22] D. Y. Bardin, M. S. Bilenky, A. Sazonov, Y. Sedykh, T. Riemann, M. Sachwitz, QED corrections with partial angular integration to fermion pair production in e+e− annihilation, Physics Letters B 255 (1991) 290–296. arXiv:hep-ph/9801209, doi:10.1016/0370-2693(91)90250-T.
[23] A. A. Akhundov, D. Y. Bardin, T. Riemann, Hunting the hidden standard Higgs, Physics Letters B 166 (1986) 111–112. doi:10.1016/0370-2693(86)91166-4.
[24] D. Y. Bardin, M. S. Bilenky, A. Chizhov, A. Sazonov, O. Fedorenko, T. Riemann, M. Sachwitz, Analytic approach to the complete set of QED corrections to fermion pair production in e+e− annihilation, Nuclear Physics B 351 (1991) 1–48. arXiv:hep-ph/9801208, doi: 10.1016/0550-3213(91)90080-H.
[25] P. C. Christova, M. Jack, T. Riemann, Hard photon emission in e+e− → anti-ff with realistic cuts, Physics Letters B 456 (1999) 264–269. arXiv:hep-ph/9902408, doi:10.1016/S0370-2693(99)00528-6.
[26] D. Y. Bardin, M. S. Bilenky, T. Riemann, M. Sachwitz, H. Vogt, DIZET: A program package for the calculation of electroweak one loop corrections for the process e+e− → f+f− around the Z0 peak, Computer Physics Communications 59 (1990) 303–312. doi:10.1016/0010-4655(90) 90179-5.
[27] D. Y. Bardin, P. K. Khristova, O. M. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar, Nuclear Physics B 175 (1980) 435–461. doi:10.1016/0550-3213(80)90021-8.
[28] D. Y. Bardin, O. M. Fedorenko, On high order effects for fermion elastic scattering processes in Weinberg–Salam theory. 1. Renormalization scheme, JINR Preprint P2-11413, Dubna, 1978.
[29] A. A. Akhundov, D. Y. Bardin, T. Riemann, Electroweak one loop corrections to the decay of the neutral vector boson, Nuclear Physics B 276 (1986) 1–13. doi:10.1016/0550-3213(86)90014-3.
[30] D. Y. Bardin, S. Riemann, T. Riemann, Electroweak one loop corrections to the decay of the charged vector boson, Zeitschrift f¨ur Physik C 32 (1986) 121–125. doi:10.1007/BF01441360.
[31] A. B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. W. Grunewald, K. Monig, S. Riemann, T. Riemann, ZFITTER: A semi-analytical program for fermion pair production in e+e− annihilation, from version 6.21 to version 6.42, Computer Physics Communications 174 (2006) 728–758. arXiv:hep-ph/0507146, doi:10.1016/j.cpc.2005.12.009.
[32] A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: A simple renormalization framework, Physical Review D 22 (1980) 971–981. doi:10.1103/PhysRevD.22.971.
[33] D. Y. Bardin, C. Burdik, P. C. Khristova, T. Riemann, Electroweak radiative corrections to deep inelastic scattering at HERA. Neutral current scattering, Zeitschrift f¨ur Physik C 42 (1989) 679. doi:10.1007/BF01557676.
[34] D. Y. Bardin, P. K. Khristova, O. M. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes, Nuclear Physics B 197 (1982) 1–44. doi:10.1016/0550-3213(82)90152-3.
[35] D. Y. Bardin, M. Grunewald, G. Passarino, Precision Calculation Project Report, Feb. 1999. arXiv:hep ph/9902452.
[36] S. Eidelman, F. Jegerlehner, Hadronic contributions to (g−2) of the leptons and to the effective fine structure constant α(M2Z), Zeitschrift f¨ur Physik C 67 (1995) 585–602. arXiv:hep-ph/219502298, doi:10.1007/BF01553984.
[37] G. Degrassi, P. Gambino, A. Sirlin, Precise calculation of M(W), sin2θ(W)(M/Z), and sin2θlept eff, Physics Letters B 394 (1997) 188–194. arXiv:hep-ph/9611363, doi:10.1016/S0370-2693(96) 01677-2.
[38] G. Degrassi, P. Gambino, Two loop heavy top corrections to the Z0 boson partial widths, Nuclear Physics B 567 (2000) 3–31. arXiv:hep-ph/9905472, doi:10.1016/S0550-3213(99)00729-4.
[39] B. A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nuclear Physics B 347 (1990) 86–104. doi:10.1016/0550-3213(90)90552-O.
[40] D. Y. Bardin, A. Leike, T. Riemann, M. Sachwitz, Energy dependent width effects in e+e− annihilation near the Z boson pole, Physics Letters B 206 (1988) 539–542. doi:10.1016/0370-2693(88)91627-9.
[41] F. A. Berends, W. L. van Neerven, G. J. H. Burgers, Higher order radiative corrections at LEP energies, Nuclear Physics B 297 (1988) 429, [Erratum: Nucl. Phys. B 304 (1988) 921]. doi:10.1016/0550-3213(88)90313 6.
[42] M. Skrzypek, Leading logarithmic calculations of QED corrections at LEP, Acta Physica Polonica B 23 (1992) 135–172.
[43] E. A. Kuraev, V. S. Fadin, On radiative corrections to e+e− single photon annihilation at high-energy, Soviet Journal of Nuclear Physics 41 (1985) 466–472.
[44] F. Boudjema et al., Standard Model Processes, in: AGS/RHIC Users Annual Meeting, 1996. arXiv:hep ph/9601224.
[45] D. Y. Bardin, M. S. Bilenky, W. Beenakker, F. A. Berends, W. L. van Neerven, S. van der Marck, G. Burgers, W. Hollik, T. Riemann, M. Sachwitz, Z Line Shape, in: LEP Physics Workshop, 1989. doi:10.5170/CERN-1989-008-V-1.89.
[46] M. Steinhauser, Leptonic contribution to the effective electromagnetic coupling constant up to three loops, Physics Letters B 429 (1998) 158–161. arXiv:hep-ph/9803313, doi:10.1016/S0370-2693(98)00503-6.
[47] D. R. Yennie, S. C. Frautschi, H. Suura, The infrared divergence phenomena and high-energy processes, Annals of Physics 13 (1961) 379–452. doi:10.1016/0003-4916(61)90151-8.
[48] M. Kobel et al., Two-Fermion Production in Electron–Positron Collisions: Two-Fermion Working Group Report, in: LEP2 Monte Carlo Workshop, 2000. arXiv:hep-ph/0007180, doi:10.5170/CERN-2000-009.269.
[49] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, J. Rittinger, Complete O(α4s) QCD corrections to hadronic Z decays, Physical Review Letters 108 (2012) 222003. arXiv:1201.5804, doi:10.1103/PhysRevLett.108.222003.
[50] A. Leike, T. Riemann, J. Rose, S matrix approach to the Z line shape, Physics Letters B 273 (1991) 513 518. arXiv:hep-ph/9508390, doi:10.1016/0370-2693(91)90307-C.
[51] T. Riemann, Cross-section asymmetries around the Z peak, Physics Letters B 293 (1992) 451–456. arXiv:hep-ph/9506382, doi:10.1016/0370-2693(92)90911-M.
[52] SANC homepage. http://sanc.jinr.ru/zfitter.
[53] A. Arbuzov, D. Y. Bardin, J. Blumlein, L. Kalinovskaya, T. Riemann, HECTOR 1.00: A program for the calculation of QED, QCD and electroweak corrections to ep and l±N deep inelastic neutral and charged current scattering, Computer Physics Communications 94 (1996) 128–184. arXiv:hep-ph/9511434, doi:10.1016/0010-4655(96)00005-7.
[54] J. H. Field, T. Riemann, BHAGENE3: A Monte Carlo event generator for lepton pair production and wide angle Bhabha scattering in e+e− collisions near the Z peak, Computer Physics Communications 94 (1996) 53–87. arXiv:hep-ph/9507401, doi:10.1016/0010-4655(95)00131-X.
[55] S. Jadach, B. F. L. Ward, Z. Was, The Monte Carlo program KORALZ, for the lepton or quark pair production at LEP/SLC energies: From version 4.0 to version 4.04, Computer Physics Communications 124 (2000) 233–237. arXiv:hep-ph/9905205, doi:10.1016/S0010-4655(99)00437-3.
[56] A. Arbuzov, J. Gluza, L. Kalinovskaya, S. Riemann, T. Riemann, V. Yermolchyk, Computer package DIZET v. 6.45, Computer Physics Communications 291 (2023) 108846. arXiv:2301.07168, doi:10.1016/j.cpc.2023.108846.
[57] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, The two-loop electroweak bosonic corrections to sin2θb eff, Physics Letters B 762 (2016) 184–189. arXiv:1607.08375, doi:10.1016/j.physletb.2016.09.012.
[58] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Electroweak pseudo-observables and Z-boson form factors at two-loop accuracy, Journal of High Energy Physics 08 (2019) 113. arXiv:1906.08815, doi:10.1007/JHEP08(2019)113.
[59] A. Freitas, W. Hollik, W. Walter, G. Weiglein, Electroweak two loop corrections to the MW −MZ mass correlation in the Standard Model, Nuclear Physics B 632 (2002) 189–218, [Erratum: Nucl. Phys. B 666 (2003) 305–307]. arXiv:hep-ph/0202131, doi:10.1016/S0550-3213(02)00243-2.
[60] A. Djouadi, P. Gambino, Electroweak gauge bosons selfenergies: Complete QCD corrections, Physical Review D 49 (1994) 3499–3511, [Erratum: Phys. Rev. D 53 (1996) 4111]. arXiv: hep-ph/9309298, doi:10.1103/PhysRevD.49.3499.
[61] L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, O(αα2s) correction to the electroweak ρ parameter, Physics Letters B 336 (1994) 560–566, [Erratum: Phys. Lett. B 349 (1995) 597–598]. arXiv:hep-ph/9406363, doi:10.1016/0370-2693(94)90573-8.
[62] K. G. Chetyrkin, J. H. Kuhn, M. Steinhauser, Corrections of order O(GFM2tα2s) to the ρ parameter, Physics Letters B 351 (1995) 331–338. arXiv:hep-ph/9502291, doi:10.1016/0370-2693(95)00380-4.
[63] K. G. Chetyrkin, J. H. Kuhn, M. Steinhauser, QCD corrections from top quark to relations between electroweak parameters to order α2s, Physical Review Letters 75 (1995) 3394–3397. arXiv:hep-ph/9504413, doi:10.1103/PhysRevLett.75.3394.
[64] M. Faisst, J. H. Kuhn, T. Seidensticker, O. Veretin, Three loop top quark contributions to the ρ parameter, Nuclear Physics B 665 (2003) 649–662. arXiv:hep-ph/0302275, doi:10.1016/S0550-3213(03)00450-4.
[65] L. Chen, A. Freitas, GRIFFIN: A C++ library for electroweak radiative corrections in fermion scattering and decay processes, SciPost Physics Codebases 2023 (2023) 18. arXiv:2211.16272, doi:10.21468/SciPostPhysCodeb.18.
[66] R. Barate et al., Search for the Standard Model Higgs boson at LEP, Physics Letters B 565 (2003) 61–75. arXiv:hep-ex/0306033, doi:10.1016/S0370-2693(03)00614-2.
[67] J. F. de Troconiz, F. J. Yndurain, Calculation of α¯QED on the Z, Physical Review D 65 (2002) 093002. arXiv:hep-ph/0107318, doi:10.1103/PhysRevD.65.093002.
[68] Precision Electroweak Measurements and Constraints on the Standard Model, Dec. 2010. arXiv: 1012.2367.
[69] S. L. Glashow, Partial symmetries of weak interactions, Nuclear Physics 22 (1961) 579–588. doi:10.1016/0029-5582(61)90469-2.
[70] S. Weinberg, A model of leptons, Physical Review Letters 19 (1967) 1264–1266. doi:10.1103/PhysRevLett.19.1264.
[71] A. Salam, Weak and electromagnetic interactions, Conference Proceedings C 680519 (1968) 367–377. doi:10.1142/9789812795915_0034.
[72] D. Albaneo, Combined Preliminary Data on Z Parameters from the LEP Experiments and Constraints on the Standard Model, in: 27th International Conference on High-Energy Physics, 1994.
[73] A Combination of Preliminary LEP Electroweak Measurements and Constraints on the Standard Model, in: 17th International Symposium on Lepton Photon Interactions, 1995.
[74] D. Abbaneo et al., A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Jan. 2000.
[75] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Feb. 2001. arXiv:hep-ex/0103048.
[76] D. Abbaneo et al., A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2001. arXiv:hep-ex/0112021.
[77] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2003. arXiv:hep-ex/0312023.
[78] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2004. arXiv:hep-ex/0412015.
[79] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Nov. 2005. arXiv:hep-ex/0511027.
[80] J. Alcaraz et al., A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2006. arXiv:hep-ex/0612034.
[81] J. Alcaraz et al., Precision Electroweak Measurements and Constraints on the Standard Model, Dec. 2007. arXiv:0712.0929.
[82] Precision Electroweak Measurements and Constraints on the Standard Model, Nov. 2008. arXiv: 0811.4682.
[83] Precision Electroweak Measurements and Constraints on the Standard Model, Nov. 2009. arXiv: 0911.2604.
[84] J. Abdallah et al., Measurement of the tau lepton polarisation at LEP2, Physics Letters B 659 (2008) 65–73. arXiv:0710.1368, doi:10.1016/j.physletb.2007.10.022.
[85] S. Navas et al., Review of particle physics, Physical Review D 110 (3) (2024) 030001. doi: 10.1103/PhysRevD.110.030001.
[86] H. Baer et al., The International Linear Collider Technical Design Report: Vol. 2 — Physics, Jun. 2013. arXiv:1306.6352.
[87] A. Abada et al., FCC-ee: The lepton collider: Future Circular Collider Conceptual Design Report, Vol. 2, European Physical Journal: Special Topics 228 (2) (2019) 261–623. doi:10.1140/epjst/e2019-900045-4.
[88] Physics and Detectors at CLIC: CLIC Conceptual Design Report, Feb. 2012. arXiv:1202.5940, doi:10.5170/CERN-2012-003.
[89] M. Dong et al., CEPC Conceptual Design Report: Vol. 2 — Physics and Detector, Nov. 2018. arXiv:1811.10545.
[90] A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann (Eds.), Theory for the FCC-ee: Report on the 11th FCC-ee Workshop: Theory and Experiments, Vol. 3/2020 of CERN Yellow Reports: Monographs, CERN, Geneva, 2019. arXiv:1905.05078, doi:10.23731/CYRM-2020-003.
[91] A. Blondel et al., Standard Model Theory for the FCC-ee Tera-Z Stage, in: Mini Workshop on Precision EW and QCD Calculations for the FCC Studies: Methods and Techniques, Vol. 3/2019 of CERN Yellow Reports: Monographs, CERN, Geneva, 2018. arXiv:1809.01830, doi:10.23731/CYRM-2019-003.
[92] A. Freitas et al., Theoretical Uncertainties for Electroweak and Higgs-Boson Precision Measurements at FCC-ee, Jun. 2019. arXiv:1906.05379.
[93] S. G. Bondarenko, A. A. Sapronov, NLO EW and QCD proton–proton cross section calculations with MCSANC-v1.01, Computer Physics Communications 184 (2013) 2343–2350. arXiv:1301. 3687, doi:10.1016/j.cpc.2013.05.010.
[94] A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, U. Klein, V. Kolesnikov, L. Rumyantsev, R. Sadykov, A. Sapronov, Update of the MCSANC Monte Carlo integrator, v. 1.20, Journal of Experimental and Theoretical Physics Letters 103 (2) (2016) 131–136. arXiv: 1509.03052, doi:10.1134/S0021364016020041.
[95] S. G. Bondarenko, L. V. Kalinovskaya, A. A. Sapronov, Monte-Carlo tool SANCphot for polarized γγ collision simulation, Computer Physics Communications 294 (2024) 108929. arXiv:2201.04350, doi:10.1016/j.cpc.2023.108929.
[96] R. Sadykov, V. Yermolchyk, Polarized NLO EW e+e− cross section calculations with ReneSANCe-v1.0.0, Computer Physics Communications 256 (2020) 107445. arXiv:2001.10755, doi:10.1016/j.cpc.2020.107445.
[97] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, Hadron–hadron collision mode in ReneSANCe-v1.3.0, Computer Physics Communications 285 (2023) 108646. arXiv:2207.04332, doi:10.1016/j.cpc.2022.108646.
[98] D. Yu. Bardin, G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions, Clarendon Press, Oxford, 1999.
[99] A. Andonov, A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, G. Nanava, W. von Schlippe, SANCscope — v.1.00, Computer Physics Communications 174 (2006) 481–517, [Erratum: Comput. Phys. Commun. 177 (2007) 623–624]. arXiv:hep-ph/0411186, doi:10.1016/j.cpc.2005.12.006.
[100] D. Bardin, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, A. Arbuzov, R. Sadykov, S. Bondarenko, One loop electroweak radiative corrections to polarized Bhabha scattering, Physical Review D 98 (1) (2018) 013001. arXiv:1801.00125, doi:10.1103/PhysRevD.98.013001.
[101] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, One-loop electroweak radiative corrections to lepton pair production in polarized electron–positron collisions, Physical Review D 102 (3) (2020) 033004. arXiv:2005.04748, doi:10.1103/PhysRevD.102.033004.
[102] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, A. Kampf, L. Rumyantsev, R. Sadykov, V. Yermolchyk, One-loop radiative corrections to photon-pair production in polarized positron–electron annihilation, Physical Review D 107 (7) (2023) 073003. arXiv:2211.11467, doi:10.1103/ PhysRevD.107.073003.
[103] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, R. Sadykov, V. Yermolchyk, One-loop electroweak radiative corrections to polarized e+e− → ZH, Physical Review D 100 (7)
(2019) 073002. arXiv:1812.10965, doi:10.1103/PhysRevD.100.073002.
[104] A. Arbuzov, S. Bondarenko, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, Electroweak effects in e+e− → ZH process, Symmetry 13 (7) (2021) 1256. doi:10.3390/sym13071256.
[105] S. G. Bondarenko, E. V. Dydyshka, L. V. Kalinovskaya, L. A. Rumyantsev, R. R. Sadykov, V. L. Ermol’chik, One-loop electroweak radiative corrections to polarized e+e− → γZ process, Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 119 (2) (2024) 75–81.
[106] A. Arbuzov, S. Bondarenko, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, Electroweak radiative corrections to polarized top quark pair production, Physical Review D 107 (11) (2023) 113006. arXiv:2305.09569, doi:10.1103/PhysRevD.107.113006.
[107] M. Benedikt et al., Future Circular Collider Feasibility Study Report: Vol. 1 — Physics, Experiments, Detectors, Apr. 2025. arXiv:2505.00272, doi:10.17181/CERN.9DKX.TDH9.
[108] R. E. Gerasimov, P. A. Krachkov, R. N. Lee, Electron–positron annihilation into heavy leptons at two loops, Journal of High Energy Physics 08 (2025) 118. arXiv:2503.09245, doi:10.1007/ JHEP08(2025)118.
[109] R. N. Lee, V. A. Stotsky, Master integrals for e+e − → 2γ process at large energies and angles,
Journal of High Energy Physics 12 (2024) 106. arXiv:2410.03336, doi:10.1007/JHEP12(2024) 106.
[110] T. Takahashi et al., Light-by-light scattering in a photon–photon collider, The European Physical
Journal C 78 (11) (2018) 893, [Erratum: Eur. Phys. J. C 82 (2022) 404]. arXiv:1807.00101,
doi:10.1140/epjc/s10052-018-6364-1.
[111] P. Chen, G. Horton-Smith, T. Ohgaki, A. W. Weidemann, K. Yokoya, CAIN: Conglomerat d’ABEL et d’interactions nonlineaires, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 355 (1995) 107–110. doi:10.1016/0168-9002(94)01186-9.
[112] K. Yokoya, User Manual of CAIN, Version 2.42, User Manual of CAIN, Version 2.40, 2018.
doi:{http://ilc.kek.jp/yokoya/CAIN}.
[113] M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, Journal of High Energy Physics 08 (2013) 106. arXiv:1306.4644, doi:10.1007/JHEP08(2013)106.
[114] J. Ellis, T. You, Sensitivities of prospective future e+e− colliders to decoupled new physics, Journal of High Energy Physics 03 (2016) 089. arXiv:1510.04561, doi:10.1007/JHEP03(2016) 089.
[115] A. Hayrapetyan et al. (CMS Collab.), Measurement of the τ lepton polarization in Z boson decays in proton–proton collisions at √s = 13 TeV, Journal of High Energy Physics 01 (2024) 101. arXiv:2309.12408, doi:10.1007/JHEP01(2024)101.
[116] Z. Zhao, S. Yang, M. Ruan, M. Liu, L. Han, Measurement of the effective weak mixing angle at the CEPC*, Chinese Physics C 47 (12) (2023) 123002. arXiv:2204.09921, doi:10.1088/1674-1137/acf91f.
[117] J. Blümlein, A. De Freitas, C. G. Raab, K. Schönwald, The O(α2) initial state QED corrections to e+e− annihilation to a neutral vector boson revisited, Physics Letters B 791 (2019) 206–209. arXiv:1901.08018, doi:10.1016/j.physletb.2019.02.038.
[118] A. B. Arbuzov, U. E. Voznaya, Higher-order NLO initial state QED radiative corrections to e+e− annihilation revisited, Physical Review D 109 (11) (2024) 113002. arXiv:2405.03443, doi:10.1103/PhysRevD.109.113002.

