Abstract
This introductory review is devoted to the newest section of the theory of symmetries -- the theory of quantum groups.
The principles of the theory of quantum groups are reviewed from the point of view of the possibility of their use for deformations of symmetries in physics models. The R-matrix approach to the theory of quantum groups is discussed in detail and is taken as the basis of the quantization of classical Lie groups, as well as some Lie supergroups. We start by laying out the foundations of non-commutative and non-cocommutative Hopf algebras. Much attention has been paid to Hecke and Birman-Murakami-Wenzl (BMW) R-matrices and related quantum matrix algebras. Noncommutative differential geometry on quantum groups of special types is discussed. Trigonometric solutions of the Yang-Baxter equations associated with the quantum groups GLq(N), SOq(N), Spq(2n) and supergroups GLq(N|M), Ospq(N|2m), as well as their rational (Yangian) limits, are presented. Rational R-matrices for exceptional Lie algebras and elliptic solutions of the Yang-Baxter equation are also considered. The basic concepts of the group algebra of the braid group and its finite dimensional quotients (such as Hecke and BMW algebras) are outlined. A sketch of the representation theories of the Hecke and BMW algebras is given, including methods for finding idempotents (quantum Young projectors) and their quantum dimensions. Applications of the theory of quantum groups and Yang-Baxter equations in various areas of theoretical physics are briefly discussed.
This is a modified version of the review paper published in 2004 as a preprint of the Max-Planck-Institut für Mathematik in Bonn.
Acknowledgements
References
[2] C. N. Yang, Some exact results for the many-body problem in one dimension with repulsivedelta-function interaction, Phys. Rev. Lett. 19 (1967) 1312–1315.
[3] R. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. (N. Y.) 70 (1972)193–228 [reprinted in Ann. Phys. 281 (2000) 187].
[4] A. B. Zamolodchikov and Al. B. Zamolodchikov, Relativistic factorizedSmatrix in two-dimensions havingO(N)isotopic symmetry, Nucl. Phys. B 133 (1978) 525.
[5] A. B. Zamolodchikov and Al. B. Zamolodchikov, FactorizedS-matrices in two dimensions as theexact solutions of certain relativistic quantum field models, Ann. Phys. (N. Y.) 120 (1979) 253.
[6] E. K. Sklyanin and L. D. Faddeev, Quantum mechanical approach to completely integrable fieldtheory models, Sov. Phys. Dokl. 23 (1978) 902–904 [reprinted in Fifty Years of MathematicalPhysics: Selected Works of Ludwig Faddeev, 2016, pp. 290–292].
[7] E. K. Sklyanin, L. A. Takhtajan, and L. D. Faddeev, The quantum inverse problem method. 1,Theor. Math. Phys. 40 (1980) 688 [Teor. Mat. Fiz. 40 (1979) 194].
[8] L. A. Takhtajan and L. D. Faddeev, The quantum method of the inverse problem and theHeisenbergXY Zmodel, Usp. Mat. Nauk 34 (5) (1979) 11.
[9] L. D. Faddeev, Quantum completely integrable models in field theory, Math. Phys. Rev. Vol. 1,Soviet Sci. Rev. Sect. C: Math. Phys. Rev., Vol. 1, Harwood Academic, Chur, 1980, pp. 107–155 [L. D. Faddeev, 40 Years in Mathematical Physics, World Scientific Series in 20th CenturyMathematics, Vol. 2, 1995, pp. 187–235].
[10] V. G. Drinfeld, Quantum Groups, in: Proceedings of the International Congress of Mathematics,Vol. 1, Berkeley, 1986, p. 798.
[11] L. A. Takhtajan, A. Yu. Alekseev, I. Ya. Aref’eva, M. A. Semenov-Tian-Shansky, E. K. Sklyanin,F. A. Smirnov, S. L. Shatashvili, Scientific heritage of L. D. Faddeev. Survey of papers, Russ.Math. Surv., 72:6 (2017) 977–1081 [Usp. Mat. Nauk, 72:6 (438) (2017) 3–112].
[12] V. Pasquier and H. Saleur, Common structures between finite systems and conformal field the-ories through quantum groups, Nucl. Phys. B 330 (1990) 523.
[13] M. Karowski and A. Zapletal, Quantum group invariant integrableNstate vertex models withperiodic boundary conditions, Nucl. Phys. B 419 (1994) 567.
[14] P. P. Kulish, Quantum groups and quantum algebras as symmetries of dynamical systems, in:Quantum Symmetries, Proceedings of the International Workshop on Mathematical Physics,ASI, Clausthal, Germany, 15–20 July 1991, Eds: H.-D. Doebner and V. K. Dobrev, 1993.
[15] A. Connes, Geometrie Non Commutative, Intereditions, Paris, 1990.
[16] A. Connes and J. Lott, Particle models and noncommutative geometry (expanded version), Nucl.Phys. B Proc. Suppl. 18 (1991) 29.
[17] X. Calmet, B. Jurco, P. Schupp, J. Wess, and M. Wohlgenannt, The standard model on non-commutative space–time, Eur. Phys. J. C 23 (2002) 363.hep-ph/0111115.
[18] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003)157.q-alg/9709040.
[19] A. Connes, M. R. Douglas, and A. Schwarz, Noncommutative geometry and matrix theory, J.High Energy Phys. 9802 (1998) 003.hep-th/9711162
[20] N. Seiberg and E. Witten, String theory and noncommutative geometry, J. High Energy Phys.9909 (1999) 032.hep-th/9908142.
[21] A. P. Isaev and Z. Popowicz, q-Trace for the quantum groups and q-deformed Yang–Mills theory,Phys. Lett. B 281 (1992) 271.
[22] A. M. Gavrilik, Quantum algebras in phenomenological description of particle properties, Nucl.Phys. Proc. Suppl. 102 (2001) 298.hep-ph/0103325; Quantum groups and Cabibbo mixing, in:Proceedings of 5th International Conference on Symmetry in Nonlinear Mathematical Physics(SYMMETRY 03), Kiev, Ukraine, 23–29 June 2003, pp. 759–766.hep-ph/0401086.
[23] O. Ogievetsky, W. B. Schmidke, J. Wess, and B. Zumino, q-Deformed Poincare algebra, Comm.Math. Phys. 150 (1992) 495.
[24] P. P. Kulish, Representations of Q-Minkowski space algebra, Algebra Anal. 6 (2) (1994) 195[English translation: St. Petersburg Math. J., 6 (2) (1995) 365].hep-th/9312139.
[25] J. A. De Azcarraga, P. P. Kulish, and F. Rodenas, Reflection equations and q Minkowski spacealgebras, Lett. Math. Phys. 32 (1994) 173.hep-th/9309036; J. A. De Azcarraga, P. P. Kulish,and F. Rodenas, On the physical contents of q-deformed Minkowski spaces, Phys. Lett. B 351(1–3) (1995) 123.arXiv:hep-th/9411121.
[26] W. Schmidke, J. Wess, and B. Zumino, A q-deformed Lorentz algebra, Z. Phys. C 52 (1991) 471.
[27] P. Podles and S. L. Woronowicz, Quantum deformation of Lorentz group, Comm. Math. Phys.130 (1990) 381.
[28] U. Carow-Watamura, M. Schlieker, M. Scholl, and S. Watamura, Tensor representation of thequantum groupSLq(2,C)and quantum Minkowski space, Z. Phys. C 48 (1990) 159; U. Carow-Watamura, et al., Quantum Lorentz group, Int. J. Mod. Phys. A 6 (1991) 3081.
[29] Sh. Majid, Braided momentum in the q-Poincar ́e group, J. Math. Phys. 34 (1993) 2045.
[30] J. Lukierski, A. Nowicki, H. Ruegg, and V. N. Tolstoy, Q deformation of Poincare algebra, Phys.Lett. B 264 (1991) 331; J. Lukierski, A. Nowicki, and H. Ruegg, New quantum Poincare algebraandκdeformed field theory, Phys. Lett. B 293 (1992) 344.
[31] B. L. Cerchiai and J. Wess, q-deformed Minkowski space based on a q-Lorentz algebra, Eur.Phys. J. C 5 (1998) 553.math.qa/9801104.
[32] L. Dolan, C. R. Nappi, and E. Witten, Yangian symmetry inD= 4superconformal Yang–Millstheory.hep-th/0401243.
[33] J. Drummond, J. Henn, J. Plefka, Yangian symmetry of scattering amplitudes inN= 4superYang–Mills theory, J. High Energy Phys. 05 (2009) 046.
[34] N. Beisert, On Yangian Symmetry in PlanarN= 4SYM.arxiv:1004.5423.
[35] T. Bargheer, N. Beisert, and F. Loebbert, Exact superconformal and Yangian symmetry ofscattering amplitudes, J. Phys. A 44 (2011) 454012.arxiv:1104.0700.
[36] D. Chicherin and R. Kirschner, Yangian symmetric correlators, Nucl. Phys. B 877 (2013) 484.arXiv:1306.0711 [math-ph].
[37] D. Chicherin, S. Derkachov, and R. Kirschner, Yang–Baxter operators and scattering ampli-tudes inN= 4super-Yang–Mills theory, Nucl. Phys. B 881 (2014) 467–501.arXiv:1309.5748[hep-th].
[38] A. Brandhuber, P. Heslop, G. Travaglini, and D. Young, Yangian Symmetry of Scattering Am-plitudes and the dilatation operator inN= 4supersymmetric Yang–Mills theory, Phys. Rev.Lett. 115 (2015) 141602.arxiv:1507.01504.
[39] D. Chicherin, V. Kazakov, F. Loebbert, D. M ̈uller, D. Zhong, Yangian symmetry for bi-scalarloop amplitudes, J. High Energy Phys. 05 (2018) 003.arXiv:1704.01967.
[40] V. Kazakov, F. Levkovich-Maslyuk, and V. Mishnyakov, Integrable Feynman Graphs and Yan-gian Symmetry on the Loom.arXiv:2304.04654v1 [hep-th].
[41] F. Loebbert, Lectures on Yangian symmetry, J. Phys. A 49 (2016) 323002.arxiv:1606.02947.
[42] L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Liealgebras, Lengingrad Math. J. 1 (1990) 193 [Algebra Anal. 1 (1989) 178].
[43] E. K. Sklyanin, Some algebraic structures connected with the Yang–Baxter equation, Funct.Anal. Appl. 16 (1982) 263 [Funkt. Anal. Pril. 16 (4) (1982) 27].
[44] E. K. Sklyanin, Some algebraic structures connected with the Yang–Baxter equation. Represen-tations of quantum algebras, Funct. Anal. Appl. 17 (1983) 273 [Funkt. Anal. Pril. 17 (4) (1983)34].
[45] A. V. Odesskii, Elliptic algebras, Russ. Math. Surv. 75 (2002) 1127.math.QA/0303021.
[46] A. P. Isaev, Quantum groups and Yang–Baxter equations, Sov. J. Part. Nucl. 26 (1995) 501 [Fiz.Elem. Chastits i At. Yadra 26 (1995) 1204].
[47] A. P. Isaev, Quantum groups and Yang–Baxter equations, Preprint MPIM (Bonn), MPI 2004-132.http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf.
[48] A. P. Isaev, Lectures in Quantum Groups and Yang–Baxter Equations.arXiv:2206.08902[math.QA].
[49] E. Sweedler, Hopf Algebras, Benjamin, 1969.
[50] E. Abe, Hopf Algebras, Cambridge University Press, 1977.
[51] V. G. Drinfeld, Almost cocommutative Hopf algebras, Algebra Anal. 1 (2) (1989) 30.
[52] Sh. Majid, Quasitriangular Hopf algebras and Yang–Baxter equations, Int. J. Mod. Phys. A 5(1990) 1.
[53] A. A. Vladimirov, On the Hopf algebras generated by the Yang–BaxterRmatrices, Z. Phys. C58 (1993) 659.
[54] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics 42,Springer-Verlag, 1977.
[55] R. M. Kashaev, Heisenberg double and pentagon relation, Algebra Anal. 8 (4) (1996) 63.q-alg/9503005.
[56] S. Baaj, G. Skandalis, Unitaires multiplicatifs et dualit ́e pour les produits crois ́es deC∗-alg ́ebres,Annales scientifiques de l’Ecole normale sup ́erieure 26 (4) (1993) 425.
[57] N. Reshetikhin, Multiparameter quantum groups and twisted quasitriangular Hopf algebras,Lett. Math. Phys. 20 (1990) 331.
[58] N. Yu. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants derived from quantumgroups, Comm. Math. Phys. 127 (1990) 1–26.
[59] C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invariants, Panoramas etSynth`eses 5, Soci ́et ́e Math ́ematique de France, 1997.
[60] V. G. Drinfeld, Quasi-Hopf algebras, Algebra Anal. 1 (6) (1989) 114.
[61] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and a group related to Gal(Q/Q), AlgebraAnal. 2 (4) (1990) 149.
[62] M. Enock and J.-M. Schwartz, Kac Algebras and Duality of Locally Compact Groups, Springer-Verlag, 1992.
[63] L. Pontryagin, Topological Groups, Princeton University Press, 1946.
[64] P. Etingof, T. Schedler, and O. Schiffmann, Explicit quantization for dynamicalr-matrices forfinite dimensional semisimple Lie algebras, J. Amer. Math. Soc. 13 (2000) 595.math.QA/9912009.
[65] A. P. Isaev and O. V. Ogievetsky, On quantization ofr-matrices for Belavin–Drinfeld triples,Phys. At. Nucl. 64 (12) (2001) 2126.math.QA/0010190.
[66] P. P. Kulish, V. D. Lyakhovsky, and A. I. Mudrov, Extended Jordanian twists for Lie algebras,J. Math. Phys. 40 (1999) 4569.math.QA/9806014.
[67] N. Yu. Reshetikhin, Quasitriangular Hopf algebras and link invariants, Algebra Anal. 1 (2) (1989)169.
[68] O. Ogievetsky, Uses of Quantum Spaces, Lectures presented at the School “Quantum Symmetriesin Theoretical Physics and Mathematics”, Bariloche, 2000, Contemporary Mathematics, 294(2002) 161–231.
[69] A. A. Vladimirov, A Method for obtaining quantum doubles from the Yang–BaxterRmatrices,Mod. Phys. Lett. A 8 (1993) 1315.hep-th/9302042.
[70] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups)Comm. Math. Phys. 122 (1989) 125.
[71] P. Aschieri and L. Castellani, An introduction to noncommutative differential geometry on quan-tum groups, Int. J. Mod. Phys. A 8 (1993) 1667.hep-th/9207084.
[72] A. Sudbery, Canonical differential calculus on quantum general linear groups and supergroups,Phys. Lett. B 284 (1–2) (1992) 61.
[73] Yu. I. Manin, Quantum groups and noncommutative geometry, Preprint CRM-1561, MontrealUniversity, 1989.
[74] Yu. I. Manin, Multiparametric quantum deformation of the general linear supergroup, Comm.Math. Phys. 123 (1989) 163.
[75] Yu. I. Manin, Notes on quantum groups and quantum de Rham complexes, Theor. Math. Phys.92 (3) (1992) 997 [Teor. Mat. Fiz. 92 (3) (1992) 425].
[76] G. Maltsiniotis, The language of spaces and of quantum groups, Comm. Math. Phys. 151 (1993)275; Groupes quantiques et structures diff ́erentielles, C. R. Acad. Sci. 311 S ́er. I (1990) 831.
[77] B. Tsygan, Notes on differential forms on quantum groups, Sel. Math. 12 (1993) 75.
[78] J. Wess and B. Zumino, Covariant differential calculus on the quantum hyperplane, Nucl. Phys.B Proc. Suppl. 18 (1990) 302.
[79] P. Schupp, P. Watts, B. Zumino, Differential geometry on linear quantum groups, Lett. Math.Phys. 25 (2) (1992) 139.arXiv:hep-th/9206029.
[80] B. Zumino, Differential calculus on quantum spaces and quantum groups, in: Proceedings ofXIX International Conference on Group Theoretical Methods in Physics, Salamanca, Spain,1992.arXiv:hep-th/9212093.
[81] T. Brzezi ́nski, Remarks on bicovariant differential calculi and exterior Hopf algebras, Lett. Math.Phys. 27 (1993) 287.
[82] A. P. Isaev and Z. Popowicz, Quantum group gauge theories and covariant quantum algebras,Phys. Lett. B 307 (1993) 353.arXiv:hep-th/9302090v2.
[83] A. P. Isaev, Quantum group covariant noncommutative geometry, J. Math. Phys. 35 (1994) 6784.arXiv:hep-th/9402060v2.
[84] A. P. Isaev,R-matrix approach to differential calculus on quantum groups, Phys. Part. Nucl. 28(3) (1997) 267 [Fiz. Elem. Chastits i At. Yadra 28 (3) (1997) 685].
[85] A. P. Isaev and P. N. Pyatov,Glq(N)-covariant quantum algebras and covariant differentialcalculus, Phys. Lett. A 179 (1993) 81.arXiv:hep-th/9211093.
[86] A. P. Isaev and P. N. Pyatov, Covariant differential complexes on quantum linear groups, J.Phys. A 28 (1995) 2227.arXiv:hep-th/9311112.
[87] L. D. Faddeev and P. N. Pyatov, The differential calculus on quantum linear groups, Am. Math.Soc. Transl. 175 (1996) 35.arXiv:hep-th/9402070.
[88] A. P. Isaev, Interrelations between quantum groups and reflection equation (braided) algebras,Lett. Math. Phys. 34 (1995) 333.arXiv:hep-th/9403154.
[89] A. P. Isaev and O. V. Ogievetsky, BRST operator for quantum Lie algebras and differentialcalculus on quantum groups, Theor. Math. Phys. 129 (2) (2001) 298.math.QA/0106206.
[90] A. P. Isaev and O. V. Ogievetsky, BRST and anti-BRST operators for quantum linear algebraUq(gl(N)), Nucl. Phys. Proc. Suppl. 102 (2001) 306.
[91] P. Schupp, P. Watts, B. Zumino, Bicovariant quantum algebras and quantum Lie algebras,Comm. Math. Phys. 157 (1993) 305–329.hep-th/9210150.
[92] B. Zumino, Wu Yong-Shi, and A. Zee, Chiral anomalies, higher dimensions, and differentialgeometry, Nucl. Phys. B 239 (1984) 477.
[93] D. Gurevich, P. Pyatov, and P. Saponov, Braided differential operators on quantum algebras, J.Geom. Phys. 61 (2011) 1485.arXiv:1004.4721 [math.QA].
[94] J. M. Maillet, Lax equations and quantum groups, Phys. Lett. B 245 (1990) 480.[95] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, QuantumR-matrices and factorization prob-lems, Geom. Phys. 5 (1988) 533–550.
[96] A. Isaev, O. Ogievetsky, P. Pyatov, and P. Saponov, Characteristic polynomials for quantummatrices, Lect. Notes Phys. Vol. 524, Springer, 1999, p. 322.
[97] A. Isaev, O. Ogievetsky, and P. Pyatov, On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities, J. Phys. A: Math. Gen. 32 (1999) L115–L121.math.QA/9809170.
[98] A. Yu. Alekseev and L. D. Faddeev,(T∗G)(T): A toy model for conformal field theory, Comm.Math. Phys. 141 (1991) 413.
[99] A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, Cayley–Hamilton–Newton identities and qu-asitriangular Hopf algebras, in: Proceedings of the Internatinal Seminar “Supersymmetries andQuantum Symmetries” (SQS’99), Dubna, 2000.arXiv: math.QA/9912197.
[100] L. Freidel and J. Maillet, Quadratic algebras and integrable systems, Phys. Lett. B 262 (1991)278; L. Hlavaty and A. Kundu, Int. J. Mod. Phys. A 11 (1996) 2143.hep-th/9406215.
[101] A. I. Molev, E. Ragoucy, and P. Sorba, Coideal subalgebras in quantum affine algebras, Rev.Math. Phys. 15 (8) (2003) 789.math.QA/0208140.
[102] A. P. Isaev, A. I. Molev, and O. V. Ogievetsky, A new fusion procedure for the Brauer algebraand evaluation homomorphisms, Int. Math. Res. Not. 11 (2012) 2571–2606.arXiv:1101.1336[math.RT].
[103] N. Yu. Reshetikhin, Integrable models of quantum one-dimensional magnets withO(N)andSp(2k)symmetry, Theor. Math. Phys. 63 (1985) 555 [Teor. Mat. Fiz. 63 (1985) 347].
[104] A. P. Isaev, D. Karakhanyan, and R. Kirschner, Orthogonal and symplectic Yangians and Yang–BaxterR-operators, Nucl. Phys. B 904 (2016) 124–147.arXiv:1511.06152 [math-ph].
[105] A. M. Gavrilik and A. U. Klimyk, q-Deformed orthogonal and pseudo-orthogonal algebras andtheir representations, Lett. Math. Phys. 21 (1991) 215.e-Print:math.qa/0203201.
[106] M. Noumi, Macdonald’s symmetric polynomials as zonal spherical functions on quantum homo-geneous spaces, Adv. Math. 123 (1996) 16.math.QA/9503224.
[107] A. Isaev, O. Ogievetsky, Half-quantum linear algebra, in: Proceedings of the XXIX InternationalColloquium on Group-Theoretical Methods in Physics, Tianjin, China, 20–26 Aug. 2012, WorldScientific, 2013, p. 479.arXiv:1303.3991 [math.QA].
[108] A. Chervov, G. Falqui, and V. Rubtsov, Algebraic properties of Manin matrices 1, Adv. Appl.Math. 43 (3) (2009) 239.
[109] A. P. Isaev, Twisted Yang–Baxter equations for linear quantum (super)groups, J. Phys. A 29(1996) 6903.q-alg/9511006.
[110] P. Etingof and A. Varchenko, Solutions of the quantum dynamical Yang–Baxter equation anddynamical quantum groups, Comm. Math. Phys. 196 (1998) 591.q-alg/9708015.
[111] D. I. Gurevich, Algebraic aspects of the quantum Yang–Baxter equation, Algebra Anal. 2 (1990)119–148 [English translation: Leningrad Math. J. 2 (1991) 801–828].
[112] J. Ding and I. Frenkel, Isomorphism of two realizations of quantum affine algebraUq(ˆgl(n)),Comm. Math. Phys. 156 (1993) 277.
[113] M. Jimbo, A q-analogue ofU(gl(N+ 1)), Hecke algebra and the Yang–Baxter equation, Lett.Math. Phys. 11 (1986) 247.
[114] M. Jimbo, A Q-difference analog ofU(G)and the Yang–Baxter equation, Lett. Math. Phys. 10(1985) 63.
[115] M. Rosso, Finite dimensional representations of the quantum analog of the enveloping algebraof a complex simple Lie algebra, Comm. Math. Phys. 117 (1988) 581.
[116] Ya. Soibelman, The algebra of functions on compact quantum group and its representations,Algebra Anal. 2 (1) (1990) 190 [English translation: Leningrad Math. J. 2 (1) (1991)].
[117] J. Donin, P. P. Kulish, and A. I. Mudrov, On universal solution to reflection equation, Lett.Math. Phys. 63 (2003) 179.math.QA/0210242.
[118] P. A. Saponov, Weyl approach to representation theory of reflection equation algebra, J. Phys.A 37 (2004) 5021.math.QA/0307024.
[119] A. I. Mudrov, Characters ofUq(gl(n))-reflection equation algebra, Lett. Math. Phys. 60 (2002)283.math.QA/0204296.
[120] D. Algethami, A. Mudrov, and V. Stukopin, Solutions to graded reflection equation ofGL-type,Lett. Math. Phys. 114 (1) (2024) 22.arXiv:2310.15667 [math.QA].
[121] M. A. Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantumdouble, Contemp. Math. 175 (1994) 219; Theor. Math. Phys. 93 (1992) 1292–1307.
[122] M. Rosso, An analogue of PBW theorem and the universalRmatrix forUhsl(N+ 1), Comm.Math. Phys. 124 (1989) 307.
[123] A. N. Kirillov and N. Reshetikhin, q-Weyl group and a multiplicative formula for universalR-matrices, Comm. Math. Phys. 134 (1990) 421.
[124] A. Yu. Alekseev and L. D. Faddeev, An involution and dynamics for the q-deformed quantumtop, Zap. Nauchn. Semin. LOMI 200 (1992) 3.hep-th/9406196.
[125] A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, Generalized Cayley–Hamilton–Newton identi-ties, Czech. J. Phys. 48 (1998) 1369–1374.math.QA/9809047.
[126] M. Nazarov and V. Tarasov, Yangians and Gelfand–Zetlin basis, Publ. RIMS 30 (1994) 459.hep-th/9302102.
[127] P. N. Pyatov and P. A. Saponov, Characteristic relations for quantum matrices, J. Phys. A:Math. Gen. 28 (1995) 4415.q-alg/9502012.
[128] D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, Hecke symmetries and characteristic relationson reflection equation algebras, Lett. Math. Phys. 41 (1997) 255.q-alg/9605048.
[129] A. P. Isaev and P. N. Pyatov, Spectral extension of the quantum group cotangent bundle, Comm.Math. Phys. 288 (2009) 1137.arXiv:0812.2225[math.QA].
[130] D. I. Gurevich, P. N. Pyatov, and P. A. Saponov, Cayley–Hamilton theorem for quantum matrixalgebras ofGL(m|n)type, Algebra Anal. 17 (1) (2005) 160 [St. Petersburg Math. J. 17 (1) (2006)119].math.QA/0412192.
[131] O. Ogievetsky and P. Pyatov, Orthogonal and symplectic quantum matrix algebras and Cayley–Hamilton theorem for them, Preprint MPIM2005-53, 2005.math.QA/0511618.[132] D. D. Demidov, Yu. I. Manin, E. E. Mukhin, and D. V. Zhdanovich, Nonstandard quantumdeformations ofGl(N)and constant solutions of the Yang–Baxter equation, Prog. Theor. Phys.Suppl. 102 (1990) 203.
[133] A. Sudbery, Consistent multiparameter quantization ofGl(N), J. Phys. A 23 (1990) L697.
[134] D. B. Fairlie and C. K. Zachos, Multiparameter associative generalizations of canonical commu-tation relations and quantized planes, Phys. Lett. B 256 (1991) 43.
[135] A. Schirrmacher, The multiparametric deformation ofGl(N)and the covariant differential cal-culus on the quantum vector space, Z. Phys. C 50 (1991) 321.
[136] A. P. Isaev, O. V. Ogievetsky, and P. N. Pyatov, OnR-matrix representations of Birman–Murakami–Wenzl algebras, Trudy MIAN 246 (2004) 147–153 (Memorial volume A. N. Tyurin).
[137] A. Schirrmacher, MultiparameterRmatrices and their quantum groups, J. Phys. A 24 (1991)L1249.
[138] H. Weyl, The Theory of Groups and Quantum Mechanics, Dover Publications, 1950.
[139] A. P. Isaev, V. A. Rubakov, Theory of Groups and Symmetries II. Representations of Groupsand Lie Algebras, Applications, World Scientific, 2021, 600 p.
[140] N. Yu. Reshetikhin and M. A. Semenov–Tian–Shansky, Central extensions of quantum currentgroups, Lett. Math. Phys. 19 (1990) 133.
[141] A. P. Isaev and R. P. Malik, Deformed traces and covariant quantum algebras for quantumgroupsGLqp(2)andGLqp(1|1), Phys. Lett. B 280 (1992) 219.hep-th/0309186.
[142] V. K. Dobrev, Duality for the matrix quantum groupGLp,q(2,C), J. Math. Phys. 33 (1992)3419.
[143] V. G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Sov. Math. Dokl. 32(1985) 254.
[144] A. I. Molev, Yangians and their applications, in: “Handbook of Algebra”, Vol. 3, M. Hazewinkel,ed., Elsevier, 2003.math.QA/0211288.
[145] A. Molev, M. Nazarov, and G. Olshanski, Yangians and classical Lie algebras, Russ. Math. Surv.51 (2) (1996) 205.
[146] P. P. Kulish and E. K. Sklyanin, Quantum spectral transform method. Recent developments, in:“Integrable Quantum Field Theories”, Lect. Notes Phys. 151 (1982) 61.
[147] R. M. Kashaev and N. Yu. Reshetikhin, Affine Toda field theory as a three-dimensional integrablesystem, Comm. Math. Phys. 188 (1997) 251.arXiv:hep-th/9507065.
[148] A. P. Isaev and S. M. Sergeev, Quantum Lax operators and discrete2+1-dimensional integrablemodels, Lett. Math. Phys. 64 (2003) 57.
[149] R. B. Zhang, Thegℓ(M|N)super Yangian and its finite dimensional representations, Lett. Math.Phys. 37 (1996) 419.q-alg/9507029.
[150] M. Chaichian and P. P. Kulish, Quantum Lie superalgebras and Q oscillators, Phys. Lett. B 234(1990) 72.
[151] E. V. Damaskinsky, P. P. Kulish, and M. A. Sokolov, Gauss decomposition for quantum groupsand supergroups, Zap. Nauchn. Semin. POMI 211 (1995) 11–45.q-alg/9505001.[152] Y. Leblanc and J. C. Wallet,Rmatrix andqcovariant oscillators forUq(sl(n|m)), Phys. Lett.B 304 (1993) 89.
[153] M. Chaichian, P. Kulish, and J. Lukierski, Supercovariant systems ofqoscillators andqsuper-symmetric Hamiltonians, Phys. Lett. B 262 (1991) 43.
[154] P. P. Kulish and E. K. Sklyanin, On the solution of the Yang–Baxter equation, J. Sov. Math. 19(1982) 1596 [Zap. Nauchn. Semin. LOMI 95 (1980) 129].
[155] M. L. Nazarov, Quantum Berezinian and the classical Capelli identity, Lett. Math. Phys. 21(1991) 123.
[156] V. Lyubashenko and A. Sudbery, Quantum supergroups ofGL(n|m)type: Differential forms,Koszul complexes and Berezinians, Duke Math. J. 90 (1) (1997) 1.hep-th/9311095.
[157] J. Schwenk, W. B. Schmidke, and S. P. Vokos, Properties of2×2quantum matrices inZ(2)graded spaces, Z. Phys. C 46 (1990) 643.
[158] W. B. Schmidke, S. P. Vokos, and B. Zumino, Differential geometry of the quantum supergroupGlq(1|1), Z. Phys. C 48 (1990) 249.
[159] P. P. Kulish, Two-parameters quantum group and gauge transformation, Zap. Nauchn. Semin.LOMI 180 (1990) 89.
[160] L. Dabrowski and L. Y. Wang, Two parameter quantum deformation ofGL(1|1), Phys. Lett. B266 (1991) 51.
[161] V. Bazhanov and A. Shadrikov, Quantum triangle equations and Lie superalgebras, Teor. Mat.Fiz. 73 (1987) 402.
[162] P. P. Kulish, Integrable graded magnets, J. Sov. Math. 35 (1986) 2648 [Zap. Nauchn. Semin.LOMI 145 (1985) 140].
[163] S. M. Khoroshkin and V. N. Tolstoy, UniversalR-matrix for quantized (super)algebras, Comm.Math. Phys. 141 (1991) 599.
[164] P. P. Kulish and N. Yu. Reshetikhin, UniversalRmatrix of the quantum superalgebraOsp(2|1),Lett. Math. Phys. 18 (1989) 143.
[165] A. Klimyk and K. Schm ̈udgen, Quantum Groups and Their Representations, Springer, 1997.
[166] B. Berg, M. Karowski, V. Kurak, and P. Weisz, FactorizedU(N)symmetricSmatrices intwo-dimensions, Nucl. Phys. B 134 (1978) 125.
[167] D. Arnaudon, J. Avan, N. Crampe, L. Frappat, E. Ragoucy,R-matrix presentation for (super)-YangiansY(g), J. Math. Phys. 44 (2003) 302.math.QA/0111325.
[168] D. Arnaudon, et al., Bethe Ansatz equations and exactSmatrices for theosp(M|2n)open superspin chain, Nucl. Phys. B 687 (3) (2004) 257.math-ph/0310042.
[169] V. V. Bazhanov, Integrable quantum systems and classical Lie algebras, Comm. Math. Phys.113 (1987) 471.
[170] V. V. Bazhanov, Trigonometric solution of triangle equations and classical Lie algebras, Phys.Lett. B 159 (1985) 321.
[171] M. Jimbo, QuantumRmatrix for the generalized Toda system, Comm. Math. Phys. 102 (1986)537.
[172] N. J. MacKay, RationalR-matrices in irreducible representations. J. Phys. A: Math. Gen. 24(17) (1991) 4017.
[173] N. J. MacKay, Introduction to Yangian symmetry in integrable field theory, Int. J. Mod. Phys.A 20 (30) (2005) 7189.
[174] A. Pressley and V. Chari, Fundamental representations of Yangians and singularities ofR-matrices, J. Reine Angew. Math. 417 (1991) 87–128.
[175] E. Ogievetsky and P. Wiegmann, FactorizedS-matrix and the Bethe ansatz for simple Lie groups,Phys. Lett. B 168 (4) (1986) 360.
[176] A. P. Isaev and S. O. Krivonos, Split Casimir operator for simple Lie algebras, solutions ofYang–Baxter equations and Vogel parameters, J. Math. Phys. 62 (8) (2021) 083503.e-Print:2102.08258 [math-ph].
[177] A. P. Isaev and S. O. Krivonos, Split Casimir operator and universal formulation of the simpleLie algebras, Symmetry 13 (6) (2021) 1046.e-Print: 2106.04470 [math-ph].
[178] N. Bourbaki, Lie Groups and Lie Algebras: Chapters 4–6, Vol. 3, Springer, 2008.
[179] N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Build-ing.arXiv:1511.08771 [hep-ph].
[180] P. Cvitanovi ́c, Birdtracks, Lie’s, and Exceptional Groups, Princeton; Oxford: Princeton Univer-sity Press, 2008.http://cns.physics.gatech.edu/grouptheory/chapters/draft.pdf.
[181] M. Jimbo and T. Miwa, q-KZ equation with|q|= 1and correlation functions of theXXZmodelin the gapless regime, J. Phys. A 29 (1996) 2923.hep-th/9601135.
[182] H. E. Boos, V. E. Korepin, F. A. Smirnov, Connecting lattice and relativistic models via confor-mal field theory, Progress in Mathematics, Vol. 237, “Infinite Dimensional Algebras and QuantumIntegrable Systems”, 2005, p. 157.math-ph/0311020.
[183] H. E. Boos, V. E. Korepin, F. A. Smirnov, New formulae for solutions of quantum Knizhnik–Zamolodchikov equations on level-4, J. Phys. A 37 (2004) 323.hep-th/0304077.
[184] I. B. Frenkel and N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equa-tions, Comm. Math. Phys. 146 (1992) 1.
[185] V. Tarasov and A. Varchenko, Geometry ofq-hypergeometric functions as a bridge betweenYangians and quantum affine algebras, Invent. Math. 128 (1997) 501.q-alg/9604011.
[186] F. A. Smirnov, Dynamical symmetries of massive integrable models, 1. Form-factor bootstrapequations as a special case of deformed Knizhnik–Zamolodchikov equations, Int. J. Mod. Phys.A 7 (1992) S813.
[187] A. P. Isaev, A. N. Kirillov, and V. O. Tarasov, Bethe subalgebras in affine Birman–Murakami–Wenzl algebras and flat connections for q-KZ equations, J. Phys. A: Math. Theor. 49 (2016)204002.arXiv:1510.05374.
[188] I. Cherednik, Difference elliptic operators and root systems, Int. Math. Res. Not. (1995) 44–59.arXiv:hep-th/9410188.
[189] A. N. Kirillov, On Some Quadratic Algebras: Jucys–Murphy and Dunkl Elements, in: “Calogero–Moser–Sutherland Models”, Springer, New York, 2000, pp. 231–248.arXiv:q-alg/9705003.
[190] A. A. Belavin, Dynamical symmetry of integrable quantum systems, Nucl. Phys. B 180[FS2](1981) 189.
[191] R. J. Baxter, One-dimensional anisotropic Heisenberg chain, Ann. Phys. 70 (1972) 323.
[192] I. V. Cherednik, On the properties of factorizedSmatrices in elliptic functions, Sov. J. Nucl.Phys. 36 (1982) 320 [Yad. Fiz. 36 (1982) 549].
[193] C. A. Tracy, Embedded elliptic curves and the Yang–Baxter equations, Physica (Utrecht) D 16(1985) 203.
[194] A. Bovier, FactorizedSmatrices and generalized Baxter models, J. Math. Phys. 24 (1983) 631.
[195] G. Felder and V. Pasquier, A simple construction of ellipticRmatrices, Lett. Math. Phys. 32(1994) 167.
[196] L. A. Takhtajan, Solutions of the triangle equations withZn×Zn-symmetry and matrix analoguesof the Weierstrass zeta and sigma functions, Zap. Nauchn. Semin. LOMI 133 (1984) 258–276.
[197] V. V. Bazhanov, QuantumRmatrices and matrix generalizations of trigonometric functions,Theor. Math. Phys. 73 (1) (1987) 1035–1039 [Teor. Mat. Fiz. 73 (1) (1987) 26–32].
[198] M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998) 133.
[199] A. P. Isaev and O. V. Ogievetsky, Braids, shuffles and symmetrizers, J. Phys. A: Math. Theor.42 (2009) 304017.arXiv:0812.3974 [math.QA].
[200] V. F. R. Jones, Baxterization, Int. J. Mod. Phys. B 4 (5) (1990) 701.
[201] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math.126 (1987) 335.
[202] G. E. Murphy, On the representation theory of the symmetric groups and associated Heckealgebras, J. Algebra 152 (1992) 287.
[203] H. Wenzl, Hecke algebras of typeAnand subfactors, Invent. Math. 92 (1988) 349.
[204] I. V. Cherednik, A new interpretation of Gelfand–Tzetlin bases, Duke Math. J. 54 (2) (1987)563.
[205] O. V. Ogievetsky and P. N. Pyatov, Lecture on Hecke Algebras, Preprint MPIM (Bonn), MPI2001-40.http://www.mpim-bonn.mpg.de/html/preprints/preprints.html.
[206] P. Martin, Potts Models and Related Problems in Statistical Mechanics, World Scientific, Sin-gapore, 1991.
[207] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambrige University Press, 1994.
[208] A. P. Isaev and O. V. Ogievetsky, On representations of Hecke algebras, Czech. J. Phys. 55 (11)(2005) 1433.
[209] A. P. Isaev and O. V. Ogievetsky, Representations ofA-type Hecke algebras, in: Proceedingsof International Workshop “Supersymmetries and Quantum Symmetries”, Dubna, 2006.arXiv:0912.3701[math.QA].
[210] D. Levy, Algebraic structure of translation-invariant spin-1/2XXZand q-Potts quantum chains,Phys. Rev. Lett. 67 (15) (1991) 1971–1974.
[211] A. P. Isaev and O. V. Ogievetsky, On Baxterized solutions of reflection equation and integrablechain models, Nucl. Phys. B 760 (2007) 167.math-ph/0510078.
[212] A. P. Isaev, Functional equations for transfer-matrix operators in open Hecke chain models,Theor. Math. Phys. 150 (2) (2007) 187.arXive:1003.3385 [math-ph].
[213] A. P. Isaev, O. V. Ogievetsky, and A. F. Os’kin, Chain models on Hecke algebra for corner typerepresentations, Rep. Math. Phys. 61 (2) (2008) 309.arXiv: 0710.0261[math.QA].
[214] C. Burdik, J. Fuksa, A. P. Isaev, S. O. Krivonos, and O. Navratil, Remarks towards the spectrumof the Heisenberg spin chain type models, Phys. Part. Nucl. 46 (3) (2015) 277.arXiv: 1412.3999[math-ph].
[215] Y. K. Zhou, Row transfer matrix functional relations for Baxter’s eight-vertex and six-vertexmodels with open boundaries via more general reflection matrices, Nucl. Phys. B 458 (1996) 504.hep-th/9510095(1995).
[216] W. L. Yang, R. I. Nepomechie, and Y. Z. Zhang, Q-operator and T–Q relation from the fusionhierarchy, Phys. Lett. B 633 (2006) 664.hep-th/0511134(2005).
[217] D. Levy and P. Martin, Hecke algebra solutions to the reflection equation, J. Phys. A 27 (1994)L521.
[218] P. Martin, D. Woodcock, and D. Levy, A diagrammatic approach to Hecke algebras of thereflection equation, J. Phys. A 33 (2000) 1265.
[219] A. Doikou and P. Martin, Hecke algebraic approach to the reflection equation for spin chains, J.Phys. A 36 (2003) 2203.
[220] P. P. Kulish and A. I. Mudrov, Baxterization of solutions to reflection equation with HeckeR-matrix, Lett. Math. Phys. 75 (2) (2006) 151–170.arXive:math/0508289 [math.QA].
[221] M. Rosso and V. F. R. Jones, On the invariants of torus knots derived from quantum groups, J.Knot Theory Ramifications 2 (1993) 97.
[222] A. Mironov, R. Mkrtchyan, and A. Morozov, On universal knot polynomials, J. High EnergyPhys. 2016 (2) (2016) 1.arXiv:1510.05884.
[223] A. Morozov, Differential expansion and rectangular HOMFLY for the figure eight knot, Nucl.Phys. B 911 (2016) 582.arXiv:1605.09728 [hep-th].
[224] Ya. Kononov and A. Morozov, On rectangular HOMFLY for twist knots, Mod. Phys. Lett. A 31(38) (2016) 1650223.arXiv:1610.04778 [hep-th].
[225] H. Itoyama, A. Mironov, A. Morozov, and An. Morozov, Character expansion for HOMFLYpolynomials. III. All 3-strand braids in the first symmetric representation, Int. J. Mod. Phys. A27 (2012) 1250099.arXiv:1204.4785 [hep-th].
[226] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, and A. Smirnov, Superpolynomialsfor toric knots from evolution induced by cut-and-join operators, J. High Energy Phys. 03 (2013)021.arXiv:1106.4305.
[227] A. Anokhina and A. Morozov, TowardsR-matrix construction of Khovanov–Rozansky poly-nomials. I. Primary T-deformation of HOMFLY, J. High Energy Phys. 07 (2014) 063.arXiv:1403.8087 [hep-th].
[228] J. S. Birman and H. Wenzl, Braids, link polynomials and new algebra, Trans. Amer. Math. Soc.313 (1) (1989) 249.
[229] H. Wenzl, Quantum Groups and Subfactors of Type B, C and D, Comm. Math. Phys. 133 (1990)383.
[230] A. P. Isaev, A. I. Molev, and A. F. Os’kin, On the idempotents of Hecke algebras, Lett. Math.Phys. 85 (2008) 79.arXiv:0804.4214 [math.QA].
[231] A. Okounkov and A. Vershik, A new approach to representation theory of symmetric groups,Selecta Math. New Ser. 2 (4) (1996) 581–605.
[232] L. K. Hadjiivanov, A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, and I. T. Todorov, Hecke algebraicproperties of dynamicalR-matrices: Application to related quantum matrix algebras, J. Math.Phys. 40 (1999) 427.arXiv:q-alg/9712026.
[233] J.-L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons in Liouville stringfield theory, Nucl. Phys. B 238 (1984) 125.
[234] G. Felder, Elliptic quantum groups, in: Proceedings of the International Congress of Mathemat-ical Physics, 1994.arXiv:hep-th/9412207.
[235] A. G. Bytsko and L. D. Faddeev, (TB)q, q-analog of model space and the Clebsch–Gordancoefficients generating matrices, J. Math. Phys. 37 (1996) 6324.arXiv:q-alg/9508022.
[236] P. Etingof and A. Varchenko, Solutions of the quantum dynamical Yang–Baxter equation anddynamical quantum groups, Comm. Math. Phys. 196 (3) (1998) 591.arXiv:q-alg/9708015.
[237] Y. Cheng, M. L. Ge, and K. Xue, Yang–Baxterization of braid group representations, Comm.Math. Phys. 136 (1) (1991) 195–208.
[238] V. F. R. Jones, On a certain value of the Kauffman polynomial, Comm. Math. Phys. 125 (1989)459.
[239] J. Murakami, Solvable lattice models and algebras of face operators, Adv. Stud. Pure Math. 19(1989) 399.
[240] I. Heckenberger and A. Sch ̈uler, Symmetrizer and antisymmetrizer of the Birman–Wenzl–Murakami algebras, Lett. Mat. Phys. 50 (1999) 45.math.QA/0002170.
[241] I. Tuba and H. Wenzl, On braided tensor categories of type BCD, Preprint, 2003.math.QA/0301142.
[242] A. P. Isaev and O. V. Ogievetsky, Jucys–Murphy elements for Birman–Murakami–Wenzl alge-bras, Phys. Part. Nucl. Lett. 8 (3) (2011) 234.arXiv:0912.4010 [math.QA].
[243] A. P. Isaev, A. I. Molev, and O. V. Ogievetsky, Idempotents for Birman–Murakami–Wenzl al-gebras and reflection equation, Adv. Theor. Math. Phys. 18 (1) (2014) 1–25.arXiv:1111.2502[math.RT].
[244] J. Murakami, The representations of the q-analogue of Brauer’s centralizer algebras and theKauffman polynomial of links, Publ. RIMS (Kyoto University) 26 (1990) 935.
[245] M. Nazarov, Young’s orthogonal form for Brauer’s centralizer algebra, J. Algebra 182 (1996) 664.
[246] A. Beliakova and Ch. Blanchet, Skein construction of idempotents in Birman–Murakami–Wenzlalgebras, Math. Ann. 321 (2) (2001) 347.arXiv: math.QA/0006143.
[247] A. Ram and H. Wenzl, Matrix units for centralizer algebras, J. Algebra 145 (1992) 378.
[248] R. Leduc and A. Ram, A ribbon Hopf algebra approach to the irreducible representations ofcentralizer algebras: The Brauer, Birman–Wenzl, and typeAIwahori–Hecke algebras, Adv.Math. 125 (AI971602) (1997) 1–94.
[249] V. A. Rubakov, Adler–Bell–Jackiw anomaly and fermion number breaking in the presence of amagnetic monopole, Nucl. Phys. B 203 (1982) 311.
[250] J. A. Minahan and K. Zarembo, The Bethe-ansatz forN= 4super Yang–Mills, J. High EnergyPhys. 0303 (2003) 013.hep-th/0212208.
[251] N. Beisert and M. Staudacher, TheN= 4SYM integrable super spin chain, Nucl. Phys. B 670(2003) 439.hep-th/0307042.
[252] L. N. Lipatov, High-energy asymptotics of multicolor QCD and exactly solvable lattice models,JETP Lett. 59 (1994) 596 [Pisma Zh. Eksp. Teor. Fiz. 59 (1994) 571].hep-th/9311037.
[253] L. N. Lipatov, High-energy asymptotics of multicolor QCD and two-dimensional conformal fieldtheories, Phys. Lett. B 309 (1993) 394.
[254] L. D. Faddeev and G. P. Korchemsky, High-energy QCD as a completely integrable model, Phys.Lett. B 342 (1995) 311.hep-th/9404173.
[255] A. V. Belitsky, A. S. Gorsky, and G. P. Korchemsky, Gauge/string duality for QCD conformaloperators, Nucl. Phys. B 667 (2003) 3.hep-th/0304028.
[256] L. D. Faddeev, How Algebraic Bethe Ansatz Works for Integrable Model, Les-Houches Lectures.hep-th/9605187.
[257] A. A. Vladimirov, Introduction to Quantum Integrable Systems. TheR-Matrix Method [in Rus-sian] (Lectures for Young Scientists, Vol. 32), R17-85-742, JINR, Dubna, 1985.
[258] N. Slavnov, Algebraic Bethe Ansatz and Correlation Functions. An Advanced Course, WorldScientific, 2022.
[259] P. P. Kulish and N. Yu. Reshetikhin, Diagonalization ofGl(N)invariant transfer matrices andquantumNwave system (Lee model), J. Phys. A 16 (1983) L591.
[260] M. L ̈usher, Dynamical charges in the quantized renormalized massive Thirring model, Nucl.Phys. B 117 (1976) 475.
[261] I. V. Cherednik, Factorizing particles on a half line and root systems, Theor. Math. Phys. 61(1984) 977 [Teor. Mat. Fiz. 61 (1984) 35].
[262] S. Ghoshal and A. B. Zamolodchikov, BoundarySmatrix and boundary state in two-dimensionalintegrable quantum field theory, Int. J. Mod. Phys. A 9 (1994) 3841.hep-th/9306002.
[263] E. K. Sklyanin, Boundary conditions for integrable quantum systems, J. Phys. A 21 (1988) 2375.
[264] P. P. Kulish and E. K. Sklyanin, Algebraic structures related to the reflection equations, J. Phys.A 25 (1992) 5963.
[265] P. P. Kulish and R. Sasaki, Covariance properties of reflection equation algebras, Prog. Theor.Phys. 89 (1993) 741.
[266] P. P. Kulish, Yang–Baxter equation and reflection equations in integrable models, in: ProceedingsSchladming School, Lect. Notes Phys. 469 (1996) 125–144.hep-th/9507070.
[267] N. J. MacKay and B. J. Short, Boundary scattering, symmetric spaces and the principal chiralmodel on the half-line, Comm. Math. Phys. 233 (2003) 313.hep-th/0104212.
[268] A. Liguori, M. Mintchev, and L. Zhao, Boundary exchange algebras and scattering on the halfline, Comm. Math. Phys. 194 (1998) 569.hep-th/9607085.
[269] L. Mezincescu, R. I. Nepomechie, and V. Rittenberg, Bethe ansatz solution of the Fateev–Zamolodchikov quantum spin chain with boundary terms, Phys. Lett. A 147 (1990) 70.
[270] L. Mezincescu, R. I. Nepomechie, Integrable open spin chains with nonsymmetricRmatrices, J.Phys. A 24 (1991) L17.
[271] L. Mezincescu, R. I. Nepomechie, Integrability of open spin chains with quantum algebra sym-metry, Int. J. Mod. Phys. A 6 (1991) 5231 [Addendum: ibid. A 7 (1992) 5657].hep-th/9206047.
[272] A. B. Zamolodchikov, Tetrahedra equations and integrable systems in three-dimensional space,Sov. Phys. JETP 52 (1980) 325 [Zh. Eksp. Teor. Fiz. 79 (1980) 641].
[273] A. B. Zamolodchikov, Tetrahedron equations and the relativisticSmatrix of straight strings in(2+1)-dimensions, Comm. Math. Phys. 79 (1981) 489.
[274] V. V. Bazhanov and R. J. Baxter, New solvable lattice models in three-dimensions, J. Stat. Phys.69 (1992) 453.
[275] V. V. Bazhanov and R. J. Baxter, Star triangle relation for a three-dimensional model, J. Stat.Phys. 71 (1993) 839.hep-th/9212050.
[276] S. M. Sergeev, Complex of three dimensional integrable models, J. Phys. A: Math. Gen. 34 (2001)10493.
[277] V. V. Bazhanov and S. M. Sergeev, Zamolodchikov’s tetrahedron equation and hidden structureof quantum groups, J. Phys. A 39 (2006) 3295.hep-th/0509181.
[278] V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, Quantum geometry of 3-dimensionallattices, J. Stat. Mech. 0807 (2008) P07004.arXiv:0801.0129 [hep-th].
[279] A. P. Isaev and P. P. Kulish, Tetrahedron reflection equation, Mod. Phys. Lett. A 12 (1997) 427.hep-th/9702013.
[280] A. Kuniba and M. Okado, Tetrahedron and 3D reflection equations from quantized algebra offunctions, J. Phys. A 45 (2012) 465206.arXiv: 1208.1586 [math-ph].
[281] A. Kuniba and V. Pasquier, Matrix product solutions to the reflection equation from three dimen-sional integrability, J. Phys. A: Math. Theor. 51 (2018) 255204.arXiv:1802.09164 [math-ph].
[282] A. Yoneyama, Tetrahedron and 3D reflection equation from PBW bases of the nilpotent subal-gebra of quantum superalgebras, Comm. Math. Phys. 387 (1) (2021) 481.
[283] Yu. I. Manin and V. V. Schechtman, Arrangements of hyperplanes, higher braid groups andhigher Bruhat orders, Adv. Stud. Pure Math. 17 (1990) 289.
[284] M. Kapranov and V. Voevodsky, Braided monoidal 2-categories and Manin–Schechtman higherbraid groups, J. Pure Appl. Algebra 92 (1994) 241.
[285] R. J. Lawrence, Algebras and triangle relations, J. Pure Appl. Algebra, 100 (1–3) (1995) 43.
[286] M. Kapranov and V. Voevodsky, Freen-categories generated by a cube, oriented matroids, andhigher Bruhat orders, Funct. Anal. Appl. 25 (1990) 50.
[287] J. C. Baez, An Introduction ton-Categories, in: International Conference on Category Theoryand Computer Science, Springer, Berlin, Heidelberg, 1997, pp. 1–33.q-alg/9705009.
[288] J. C. Baez and M. Shulman, Lectures onn-Categories and Cohomology. Towards Higher Cate-gories. Springer, New York, 2010, p. 1–68.arXiv: math/0608420 [math.CT].
[289] V. V. Bazhanov and Yu. G. Stroganov, On commutativity conditions for transfer matrices onmultidimensional lattice, Teor. Mat. Fiz. 52 (1982) 105.
[290] A. B. Zamolodchikov, Fishnet diagrams as a completely integrable system, Phys. Lett. B 97(1980) 63.
[291] D. I. Kazakov, The method of uniqueness, a new powerful technique for multiloop calculations,Phys. Lett. B 133 (1983) 406.
[292] V. V. Belokurov and N. I. Ussyukina, Calculation of ladder diagrams in arbitrary order, J. Phys.A 16 (1983) 2811.
[293] D. J. Broadhurst, Summation of an infinite series of ladder diagrams, Phys. Lett. B 307 (1993)132.
[294] N. I. Ussyukina and A. I. Davydychev, Exact results for three- and four-point ladder diagramswith an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136.
[295] S. G. Gorishnii and A. P. Isaev, On an approach to the calculation of multiloop massless Feynmanintegrals, Theor. Math. Phys. 62 (1985) 232 [Teor. Mat. Fiz. 62 (1985) 345].
[296] P. A. Baikov and K. G. Chetyrkin, Four loop massless propagators: An algebraic evaluation ofall master integrals, Nucl. Phys. B 837 (2010) 186.arXiv:1004.1153.
[297] A. P. Isaev, Multi-loop Feynman integrals and conformal quantum mechanics, Nucl. Phys. B 662(2003) 461.hep-th/0303056.
[298] A. P. Isaev, Operator approach to analytical evaluation of Feynman diagrams, Phys. At. Nucl.71 (2008) 914.arXiv:0709.0419[hep-th].
[299] D. Chicherin, S. Derkachov, and A. P. Isaev, Conformal group:R-matrix and star-trianglerelation, J. High Energy Phys. 04 (2013) 020.arXiv:1206.4150 [math-ph].
[300] S. E. Derkachov, G. P. Korchemsky, and A. N. Manashov, Noncompact Heisenberg spin magnetsfrom high-energy QCD: I. Baxter Q-operator and separation of variables, Nucl. Phys. B 617(2001) 375-440.arXiv:hep-th/0107193.
[301] S. E. Derkachov and A. N. Manashov, Factorization ofR-matrix and Baxter Q-operators forgenericsl(N)spin chains, J. Phys. A 42 (2009) 075204.arXiv:0809.2050 [nlin.SI].
[302] D. T. Barfoot and D. J. Broadhurst,Z(2)×S(6)symmetry of the two loop diagram, Z. Phys. C41 (1988) 81.
[303] G. t’Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973)455.
[304] R. M. Kashaev, On discrete three-dimensional equations associated with the local Yang–Baxterrelation, Lett. Math. Phys. 38 (1996) 389.
[305] J. M. Maillet and F. Nijhoff, Integrability for multidimensional lattice models, Phys. Lett. B 224(1989) 389.
[306] E. S. Fradkin and M. Ya. Palchik, Recent developments in conformal invariant quantum fieldtheory, Phys. Rep. 44 (5) (1978) 249–349.
[307] D. Chicherin, S. Derkachov, and A. P. Isaev, The spinorialR-matrix, J. Phys. A 46 (2013)485201.arXiv:1303.4929 [math-ph].
[308] I. Mitra, On conformal invariant integrals involving spin one-half and spin-one particles, J. Phys.A 41 (2008) 315401.arXiv:0803.2630 [hep-th].
[309] V. Kazakov and E. Olivucci, Biscalar integrable conformal field theories in any dimension, Phys.Rev. Lett. 121 (2018) 131601.arXiv:1801.09844.
[310] B. Basso and L. J. Dixon, Gluing ladder Feynman diagrams into fishnets, Phys. Rev. Lett. 119(2017) 071601.arXiv:1705.03545.
[311] N. Gromov, V. Kazakov, and G. Korchemsky, Exact correlation functions in conformal fishnettheory, J. High Energy Phys. 08 (2019) 123.arXiv:1808.02688.
[312] S. Derkachov, E. Olivucci, Conformal quantum mechanics & the integrable spinning fishnet, J.High Energy Phys. 11 (2021) 060.e-Print: 2103.01940 [hep-th].
[313] S. Derkachov, G. Ferrando, and E. Olivucci, Mirror channel eigenvectors of thed-dimensionalfishnets, J. High Energy Phys. 12 (2021) 174.arXiv:2108.12620 [hep-th].
[314] S. E. Derkachov, A. P. Isaev, and L. A. Shumilov, Ladder and zig-zag Feynman diagrams, oper-ator formalism and conformal triangles, J. High Energy Phys. 06 (2023) 059.arXiv:2302.11238[hep-th].
[315] R. M. Iakhibbaev, Regge limit of correlation function in 6d biscalar fishnet models, Phys. Part.Nucl. Lett. 21 (4) (2024) 587–589.
[316] M. Alfimov, G. Ferrando, V. Kazakov, and E. Olivucci, Checkerboard CFT, J. High EnergyPhys. 01 (2025) 015.arXiv:2311.01437 [hep-th].
[317] E. Witten, Gauge theories, vertex models and quantum groups, Nucl. Phys. B 330 (2–3) (1990)285.
[318] L. Alvarez-Gaume, C. Gomez, and G. Sierra, Duality and quantum groups, Nucl. Phys. B 330(2–3) (1990) 347.
[319] V. V. Bazhanov, R. M. Kashaev, V. V. Mangazeev, and Yu. G. Stroganov,(ZN×)n−1general-ization of the chiral Potts model, Comm. Math. Phys. 138 (1991) 393.
[320] E. Date, M. Jimbo, K. Miki, and T. Miwa, Generalized chiral Potts models and minimal cyclicrepresentations ofUq(ˆgl(n,C)), Comm. Math. Phys. 137 (1991) 133.
[321] P. Furlan, A. Ganchev, and V. P. Petkova, Quantum groups and fusion rules multiplicities, Nucl.Phys. B 343 (1990) 205.
[322] A. T. Filippov, A. P. Isaev, and A. B. Kurdikov, Paragrassmann analysis and quantum groups,Mod. Phys. Lett. A 7 (1992) 2129.hep-th/9204089.
[323] P. Furlan, L. K. Hadjiivanov, A. P. Isaev, O. V. Ogievetsky, P. N. Pyatov, I. T. Todorov, Quantummatrix algebra for theSU(n)WZNW model, J. Phys. A 36 (2003) 5497.hep-th/0003210.
[324] V. Chari, A. Pressley, Quantum affine algebras at roots of unity, Represent. Theor. Amer. Math.Soc. 1 (12) (1997) 280.
[325] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Yu. Tipunin, Modular group representa-tions and fusion in logarithmic conformal field theories and in the quantum group center, Comm.Math. Phys. 265 (2006) 47.hep-th/0504093.
[326] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, I. Y. Tipunin, Kazhdan–Lusztig-dual quan-tum group for logarithimic extensions of Virasoro minimal models, J. Math. Phys. 48 (3) (2007).

