Abstract
Atmospheric heavy metals are persistent, bioaccumulative, and toxic pollutants capable of long-range transport, posing significant ecological and public health risks. This review synthesizes five decades of research (1973–2024) on emission sources, transport mechanisms, deposition pathways, and monitoring approaches, supported by a bibliometric analysis of 1642 Scopus-indexed articles. Anthropogenic activities, including industrial operations, mining and smelting, vehicular emissions, and agricultural inputs, remain dominant contributors, while volcanic eruptions, geothermal activity, sea-spray aerosols, and soil-dust resuspension constitute important natural sources. Once emitted, metals associate with particulate matter (e.g., PM2.5, PM10), undergo atmospheric circulation, and are deposited through dry and wet processes, enabling transfer from urban centers to agricultural systems and remote environments. Urban areas exhibit the highest deposition loads, agricultural landscapes show substantial foliar uptake, and remote ecosystems display clear signatures of transboundary transport. Advances in analytical and biomonitoring techniques, including Atomic Absorption Spectroscopy, Inductively Coupled Plasma Mass Spectrometry, X-Ray Fluorescence, and moss-based bioindicators, have improved detection sensitivity. Mosses enhance sensitivity by acting as natural, long-term integrators of atmospheric deposition: their high surface-area-to-mass ratio, absence of cuticles and root systems, and direct uptake from precipitation and aerosols enable efficient accumulation of trace metals, revealing low-level and chronic deposition signals often missed by short-term instrumental air sampling. Bibliometric results reveal exponential growth in publications and strong collaboration networks centered in Asia, Europe, and North America, with underrepresentation in Africa, South America, and Central Asia. Key research gaps include limited long-term health assessments; insufficient real-time and low-cost monitoring technologies; low-resolution source apportionment; and minimal attention to emerging contaminants globally.
Acknowledgements
References
[1] K. Akansha, M. Jain, B. M. Sharma, G. K. Bharat, Global environmental occurrence of heavy metals, in: P. Chakraborty, G. K. Bharat, B. M. Sharma, P. Singh (Eds.), Endocrine-Disrupting Chemicals, Elsevier, 2024, pp. 237-247. https://doi.org/10.1016/B978-0-12-823897-4.00003-4
[2] J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6(9) (2020) e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
[3] Z. Rahman, V. P. Singh, The relative impact of toxic heavy metals (THMs) arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview, Environmental Monitoring and Assessment 191 (2019) 419. https://doi.org/10.1007/s10661-019-7528-7
[4] V. Gupta, Vehicle-Generated Heavy Metal Pollution in an Urban Environment and Its Distribution into Various Environmental Components, in: V. Shukla, N. Kumar (Eds.), Environmental Concerns and Sustainable Development, Springer, 2020, pp. 113–127. https://doi.org/10.1007/978-981-13-5889-0_5
[5] B. Gao, H. Zhou, Y. Huang, J. Gao, X. Liu, Characteristics of Heavy Metals and Pb Isotopic Composition in Sediments Collected from the Tributaries in Three Gorges Reservoir, China. Scientific World Journal (2014) 1-7. https://doi.org/10.1155/2014/685834
[6] J. Csavina, J. Field, M. P. Taylor, S. Gao, A. Landázuri, E. A. Betterton, A. E. Sáez, A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations, Science of the Total Environment 433 (2012) 58-73. https://doi.org/10.1016/j.scitotenv.2012.06.013
[7] G. Chen, Y. Yang, X. Liu, M. Wang, Spatial Distribution Characteristics of Heavy Metals in Surface Soil of Xilinguole Coal Mining Area Based on Semivariogram, ISPRS International Journal of Geo-Information 10(5) (2021) 290. https://doi.org/10.3390/ijgi10050290
[8] R.N. Khalef, A. I. Hassan, H. M. Saleh, Heavy metal’s environmental impact, in: H. Saleh, A. I. Hassan, (Eds.), Environmental Impact and Remediation of Heavy Metals: IntechOpen, 2022, https://doi.org/10.5772/intechopen.103907
[9] C.F. Carolin, P. S. Kumar, A. Saravanan, G. J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review, Journal of Environmental Chemical Engineering 5(3) (2017) 2782-2799. https://doi.org/10.1016/j.jece.2017.05.029
[10] H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, Journal of Chemistry 2019(1) (2019) 6730305. https://doi.org/10.1155/2019/6730305
[11] X. Liu, W. Ouyang, Y. Shu, Y. Tian, Y. Feng , T. Zhang, W. Chen, Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution, Environmental Pollution 254 (2019) 113113. https://doi.org/10.1016/j.envpol.2019.113113
[12] S.A. Uzoekwe, S. C. Izah, A. O. Aigberua, Environmental and human health risk of heavy metals in atmospheric particulate matter (PM10) around gas flaring vicinity in Bayelsa State, Nigeria, Toxicology and Environmental Health Sciences 13 (2021) 323–335. https://doi.org/10.1007/s13530-021-00085-7
[13] L.V. Veremchuk, E. E. Mineeva, T. I. Vitkina, T. A. Gvozdenko, K. S. Golokhvast, Impact of atmospheric microparticles and heavy metals on external respiration function of urbanized territory population, Russian Open Medical Journal 6(4) (2017) 402-402. https://doi.org/10.15275/rusomj.2017.0402
[14] Z. Fu, S. Xi, The effects of heavy metals on human metabolism, Toxicology Mechanisms and Methods 30(3) (2020) 167-176. https://doi.org/10.1080/15376516.2019.1701594
[15] A. Iqubal, M. Ahmed, S. Ahmad, C. R. Sahoo, M. K. Iqubal, S. E. Haque, Environmental neurotoxic pollutants, Environmental Science and Pollution Research 27 (2020) 41175-41198. https://doi.org/10.1007/s11356-020-10539-z
[16] X. Zeng, X. Xu, Q Qin, K. Ye, W. Wu, X. Huo, Heavy metal exposure has adverse effects on the growth and development of preschool children, Environmental Geochemistry and Health 41 (2019) 309-321. https://doi.org/10.1007/s10653-018-0114-z
[17] C. Phaenark, Y. Phankamolsil, W. Sawangproh, Ecological and health implications of heavy metal bioaccumulation in Thai Fauna: A systematic review, Ecotoxicology and Environmental Safety 285 (2024) 117086. https://doi.org/10.1016/j.ecoenv.2024.117086
[18] K. Mehmood, H. R. Ahmad, R. Abbas, G. Murtaza, Heavy metals in urban and peri-urban soils of a heavily-populated and industrialized city: Assessment of ecological risks and human health repercussions, Human and Ecological Risk Assessment: An International Journal 26(6) (2020) 1705-1722. https://doi.org/10.1080/10807039.2019.1601004
[19] X. Liu, W. Ouyang, Y. Shu, Y. Tian, Y. Feng, T. Zhang, W. Chen, Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution, Environmental Pollution 254 (2019) 113113. https://doi.org/10.1016/j.envpol.2019.113113
[20] S.A. Uzoekwe, S. C. Izah, A. O. Aigberua, Environmental and human health risk of heavy metals in atmospheric particulate matter (PM10) around gas flaring vicinity in Bayelsa State, Nigeria. Toxicology and Environmental Health Sciences 13 (2021) 323–335. https://doi.org/10.1007/s13530-021-00085-7
[21] K. Mehmood, H. R. Ahmad, R. Abbas, G. Murtaza, Heavy metals in urban and peri-urban soils of a heavily-populated and industrialized city: Assessment of ecological risks and human health repercussions. Human and Ecological Risk Assessment: An International Journal 26(6) (2020) 1705-1722. https://doi.org/10.1080/10807039.2019.1601004
[22] J. Baas, M. Schotten, A. Plume, G. Côté, R. Karimi, Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quantitative Science Studies, 1(1) (2020) 377-386. https://doi.org/10.1162/qss_a_00019
[23] X. Chen, R. Ding, K. Xu, S. Wang, T. Hao, Y. Zhou, A bibliometric review of natural language processing empowered mobile computing, Wireless Communications and Mobile Computing 2018(1) (2018) https://doi.org/10.1155/2018/1827074
[24] Q. Ma, Y. Li, Y. Zhang, Informetric analysis of highly cited papers in environmental sciences based on essential science indicators, International Journal of Environmental Research and Public Health 17(11) (2020) 3781. https://doi.org/10.3390/ijerph17113781
[25] L. Bornmann, H. D. Daniel, What do citation counts measure? A review of studies on citing behavior, Journal of Documentation 64(1) (2008) 45-80. https://doi.org/10.1108/00220410810844150
[26] A. Kalnbaļķite, J. Pubule, D. Blumberga, Education for Advancing the Implementation of the Green Deal Goals for Bioeconomy, Environmental and Climate Technologies 26(1) (2022) 75-83. https://doi.org/10.2478/rtuect-2022-0007
[27] L. Sun, Y. Yin, Discovering themes and trends in transportation research using topic modeling, Transportation Research Part C: Emerging Technologies 77 (2017) 49-66. https://doi.org/10.1016/j.trc.2017.01.013
[28] Q. Yang, G. Liu, J. Falandysz, L. Yang, C. Zhao, C. Chen, Y. Sun, M. Zheng, G. Jiang, Atmospheric emissions of particulate matter-bound heavy metals from industrial sources, Science of The Total Environment 947 (2024) 174467. https://doi.org/10.1016/j.scitotenv.2024.174467
[29] H. Wang, A. Maqbool, X. Xiao, H. Yang, W. Bi, Z. Bian, Seasonal pollution and risk assessment of heavy metals in atmospheric dust from coal mining area. International Journal of Environmental Science and Technology 19 (2022) 11963 - 11972. https://doi.org/10.1007/s13762-022-03916-3.
[30] W. Huang, S. Wang, L. Wang, Y. Song, Y. Zhu, Y. Xie, Y. Hu, Source apportionment of soil heavy metal(loid)s in farmland using diverse models: a comparative assessment in the Yellow River Delta, Journal of Marine Science and Engineering 11(5) (2023) 1069. https://doi.org/10.3390/jmse11051069
[31] Z. Zhang, J. Abuduwaili, F. Jiang, Heavy metals in surface water in eastern, central and western Tianshan Mountains, Central Asia, Asian Journal of Chemistry 25(14) (2013) 7883–7887. https://doi.org/10.14233/ajchem.2013.14675
[32] S. Calabrese, W. D’Alessandro, S. Bellomo, L. Brusca, R.S. Martin, F. Saiano, F. Parello, Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): Part 1 – Major and trace element composition, Chemosphere 119 (2015) 1447–1455. https://doi.org/10.1016/j.chemosphere.2014.08.086
[33] S. Hong, J.P. Candelone, C.F. Boutron, Deposition of atmospheric heavy metals to the Greenland ice sheet from the 1783–1784 volcanic eruption of Laki, Iceland, Earth and Planetary Science Letters 144(3–4) (1996) 605–610. https://doi.org/10.1016/S0012-821X(96)00171-9
[34] A. Saha, B. K. S. Gupta, S. Patidar, N. Martínez-Villegas, Estimating Source Apportionment of Heavy Metals Contamination in Surface Soil Based on a Positive Matrix Factorization (PMF) Model around Cerrito Blanco in San Luis Potosi, Mexico, Proceedings 87(1) (2023) 19. https://doi.org/10.3390/IECG2022-13746
[35] T. Niisoe, E. Nakamura, K. Harada, H. Ishikawa, T. Hitomi, T. Watanabe, Z. Wang, A. Koizumi, A global transport model of lead in the atmosphere, Atmospheric Environment 44(14) (2010) 1806–1814. https://doi.org/10.1016/j.atmosenv.2010.01.001
[36] M. Uematsu, H. Hattori, T. Nakamura, Y. Narita, J. Jung, K. Matsumoto, Y. Nakaguchi, M.D. Kumar, Atmospheric transport and deposition of anthropogenic substances from Asia to the East China Sea, Marine Chemistry 120(1–4) (2010) 108–115. https://doi.org/10.1016/j.marchem.2010.01.004
[37] Y. Zhang, S. Meng, J. Wang, J. Hu, H. Wu, V. Kolodeznikov, E. Zakharov, S. Danilova, Z. Tang, Z. Zhang, Assessment of heavy metal contamination and health risks in urban road dust and green belt soil: a case study in Harbin City, China, Environmental Geochemistry and Health 47 (2025) 302. https://doi.org/10.1007/s10653-025-02595-6
[38] S. Roy, S. Gupta, J. Prakash, G. Habib, P. Kumar, A global perspective of the current state of heavy metal contamination in road dust, Environmental Science and Pollution Research 29 (2022) 33230–33251. https://doi.org/10.1007/s11356-022-18583-7
[39] A. Banari, D. Hertel, U. Schlink, U. Hampel, G. Lecrivain, Simulation of particle resuspension by wind in an urban system, Environmental Fluid Mechanics 23 (2022) 41-63. https://doi.org/10.1007/s10652-022-09905-x
[40] A. Liu, Y. Ma, J.M. Gunawardena, P. Egodawatta, G.A. Ayoko, A. Goonetilleke, Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution, Ecotoxicology and Environmental Safety 164 (2018) 696–703. https://doi.org/10.1016/j.ecoenv.2018.08.072
[41] J. Gunawardena, A.M. Ziyath, P. Egodawatta, G.A. Ayoko, A. Goonetilleke, Sources and transport pathways of common heavy metals to urban road surfaces, Ecological Engineering 77 (2015) 98–102. https://doi.org/10.1016/j.ecoleng.2015.01.023
[42] T. Sfetsas, S. Ghoghoberidze, P. Karnoutsos, V. Tziakas, M. Karagiovanidis, D. Katsantonis, Spatial and Temporal Patterns of Trace Element Deposition in Urban Thessaloniki: A Syntrichia Moss Biomonitoring Study, Atmosphere 15(11) (2024) p1378. https://doi.org/10.3390/atmos15111378
[43] W.Q.Y. Dong, Y. Cui, X. Liu, Instances of soil and crop heavy metal contamination in China, Soil and Sediment Contamination 10(5) (2001) 497–510. https://doi.org/10.1080/20015891109392
[44] R. Anaman, C. Peng, Z. Jiang, X. Liu, Z. Zhou, Z. Guo, X. Xiao, Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS-based PCA and PMF, Science of the Total Environment 823 (2022) 153759. https://doi.org/10.1016/j.scitotenv.2022.153759
[45] M. Peris, C. Micó, L. Recatalá, R. Sánchez, J. Sánchez, Heavy metal contents in horticultural crops of a representative area of the European Mediterranean region, Science of the Total Environment 378(1–2) (2007) 42–48. https://doi.org/10.1016/j.scitotenv.2007.01.030
[46] Q. Deng, Z. Sun, L. Zhang, Y. Zhang, L. Zhou, J. Yang, G. Sun, C. Lu, Transport characteristics of heavy metals in the soil–atmosphere–wheat system in farming areas and development of a multiple linear regression predictive model, Scientific Reports 14(1) (2024) 17322. https://doi.org/10.1038/s41598-024-68440-5
[47] B. He, W. Wang, R. Geng, Z. Ding, D. Luo, J. Qiu, G. Zheng, Q. Fan, Exploring the fate of heavy metals from mining and smelting activities in soil–crop systems in Baiyin, NW China, Ecotoxicology and Environmental Safety 207 (2021) 111234. https://doi.org/10.1016/j.ecoenv.2020.111234
[48] J.W. Dalenberg, W. Van Driel, Contribution of atmospheric deposition to heavy-metal concentrations in field crops, Netherlands Journal of Agricultural Science 38(3A) (1990) 369–379. https://doi.org/10.18174/njas.v38i3A.16594
[49] L. De Temmerman, M. Hoenig, Vegetable crops for biomonitoring lead and cadmium deposition, Journal of Atmospheric Chemistry 49 (2004) 121–135. https://doi.org/10.1007/s10874-004-1219-6
[50] Y. Han, Z. Jin, J. Cao, E.S. Posmentier, Z. An, Atmospheric Cu and Pb deposition and transport in lake sediments in a remote mountain area, northern China, Water, Air, and Soil Pollution 179 (2007) 167–181. https://doi.org/10.1007/s11270-006-9222-y
[51] M. Qin, Y. Jin, T. Peng, B. Zhao, D. Hou, Heavy metal pollution in Mongolian-Manchurian grassland soil and effect of long-range dust transport by wind, Environment International 177 (2023) 108019. https://doi.org/10.1016/j.envint.2023.108019
[52] A.A. Vinogradova, E.I. Kotova, V.Y. Topchaya, Atmospheric transport of heavy metals to regions of the north of the European territory of Russia, Geography and Natural Resources 38 (2017) 78–85. https://doi.org/10.1134/S1875372817010103
[53] A. Tuohy, N. Bertler, P. Neff, R. Edwards, D. Emanuelsson, T. Beers, P. Mayewski, Transport and deposition of heavy metals in the Ross Sea Region, Antarctica, Journal of Geophysical Research: Atmospheres 120(20) (2015) 10-996. https://doi.org/10.1002/2015JD023293
[54] S.P. Bhavsar, N. Gandhi, M.L. Diamond, Extension of coupled multispecies metal transport and speciation (TRANSPEC) model to soil, Chemosphere 70(5) (2008) 914–924. https://doi.org/10.1016/j.chemosphere.2007.06.082
[55] F. Xie, H. Tan, B. Yang, J.L. He, A.N. Chen, X.M. Wen, The study of atmospheric transport and deposition of cadmium emitted from a primitive zinc production area, Water, Air, and Soil Pollution 225 (2014) 1–7. https://doi.org/10.1007/s11270-014-2162-z
[56] X. Li, H. Yang, C. Zhang, G. Zeng, Y. Liu, W. Xu, Y. Wu, S. Lan, Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China, Chemosphere 170 (2017) 17–24. https://doi.org/10.1016/j.chemosphere.2016.12.011
[57] D. Hidayati, B.S. Ismail, M. Shuhaimi-Othman, N. Sulaiman, Chemical composition of a mud volcano LUSI and the health risk involved based on the air quality index that occurred as a result of disastrous gas exploration drilling activities in Sidoarjo, Indonesia, Sains Malaysiana 47(8) (2018) 1665–1674. http://dx.doi.org/10.17576/jsm-2018-4708-05
[58] E. Ilyinskaya, A. Schmidt, T.A. Mather, F.D. Pope, C. Witham, P. Baxter, T. Jóhannsson, M. Pfeffer, S. Barsotti, A. Singh, P. Sanderson, B. Bergsson, B.M. Kilbride, A. Donovan, N. Peters, C. Oppenheimer, M. Edmonds, Understanding the environmental impacts of large fissure eruptions: Aerosol and gas emissions from the 2014–2015 Holuhraun eruption (Iceland), Earth and Planetary Science Letters 472 (2017) 309–322. https://doi.org/10.1016/j.epsl.2017.05.025
[59] M. Santoso, D. D. Lestiani, S. Kurniawati, E. Damastuti, I. Kusmartini, D. P. D. Atmodjo, D. K. Sari, P. K. Hopke, R. Mukhtar, T. Muhtarom, A. Tjahyadi, S. Parian, N. Kholik, D. A. Sutrisno, D. Wahyudi, T. D. Sitorus, J. Djamilus, A. Riadi, J. Supriyanto, N. Dahyar, S. Sondakh, K. Hogendorp, N. Wahyuni, I. G. Bejawan, L. S. Suprayadi, Assessment of urban air quality in Indonesia. Aerosol and Air Quality Research 20 (2020) 2142-2158. https://doi.org/10.4209/aaqr.2019.09.0451
[60] J.E. Houck, D.W. McClain, Air quality assessments in support of the Environmental Impact Statement (EIS), Oregon Air Contaminant Discharge Permit (ACDP) and Oregon Energy Facility Siting Council certificate (EFSC) for the Newberry Geothermal Pilot Project. in: Proceedings of the Annual Meeting of the Geothermal Resources Council, Portland, OR, USA (1996).
[61] A. Sancini, F. Tomei, G. Tomei, T. Caciari, V. Di Giorgio, J. C. André, P. Palermo, G. Andreozzi, N. Nardone, M.P. Schifano, M. Fiaschetti, C. Cetica, M. Ciarrocca, Urban pollution. Giornale Italiano di Medicina del Lavoro ed Ergonomia 34(2) (2012) 187–196.
[62] M.P. Velásquez-García, K.S. Hernández, J.A. Vergara-Correa, R.J. Pope, M. Gómez-Marín, A.M. Rendón, Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America, Atmospheric Chemistry and Physics 24(20) (2024) 11497–11520. https://doi.org/11497-11520
[63] R.R. Karri, T. Vera, S.K.M. Hassan, M.I. Khoder, M.H. Dehghani, N.M. Mubarak, G. Ravindran, Classification, sources, and occurrence of outdoor air pollutants: A comprehensive overview. in: M.H. Dehghani, R.R. Karri, T. Vera, S.K.M. Hassan (Eds.), Health and Environmental Effects of Ambient Air Pollution, Elsevier, 2024, pp. 1–34.
[64] D. Wan, Z. Han, J.N. Yang, G. Yang, X. Liu, Heavy metal pollution in settled dust associated with different urban functional areas in a heavily air-polluted city in north China, International Journal of Environmental Research and Public Health 13(11) (2016) 1119. https://doi.org/10.3390/ijerph13111119
[65] Y. Li, B. Zhao, K. Duan, J. Cai, W. Niu, X. Dong, Assessments of water-soluble inorganic ions and heavy metals in atmospheric dustfall and topsoil in Lanzhou, China, International Journal of Environmental Research and Public Health 17(8) (2020) 2970. https://doi.org/10.3390/ijerph17082970
[66] M.H. Martin, Biological indicators of natural ore-bodies: Geobotanical and biogeochemical prospecting for heavy metal deposits. in: M.H. Martin, P.J. Coughtrey (Eds.), Biological Monitoring of Heavy Metal Pollution: Land and Air, Applied Science Publishers, 2012, pp. 35–59.
[67] E. Steinnes, O. Johansen, O. Røyset, M. Ødegård, Comparison of different multielement techniques for analysis of mosses used as biomonitors, Environmental Monitoring and Assessment 25 (1993) 87–97. https://doi.org/10.1007/BF00549130
[68] B.J.B. Nyarko, D. Adomako, Y. Serfor-Armah, S.B. Dampare, D. Adotey, E.H.K. Akaho, Biomonitoring of atmospheric trace element deposition around an industrial town in Ghana, Radiation Physics and Chemistry 75(9) (2006) 954–958. https://doi.org/10.1016/j.radphyschem.2005.08.021
[69] A.N. Ediriweera, S.C. Karunarathna, N. Yapa, D. Schaefer, A. Ranasinghe, N. Suwannarach, J. Xu, Ectomycorrhizal mushrooms as a natural bio-indicator for assessment of heavy metal pollution, Agronomy 12(5) (2022) 1041. https://doi.org/10.3390/agronomy12051041
[70] M. Tomašević, S. Rajšić, D. Đorđević, M. Tasić, J. Krstić, V. Novaković, Heavy metals accumulation in tree leaves from urban areas, Environmental Chemistry Letters 2 (2004) 151–154. https://doi.org/10.1007/s10311-004-0081-8
[71] S.M. Cucu-Man, E. Steinnes, Analysis of selected biomonitors to evaluate the suitability for their complementary use in monitoring trace element atmospheric deposition, Environmental Monitoring and Assessment 185 (2013) 7775–7791. https://doi.org/10.1007/s10661-013-3135-1
[72] N.M. ElShabrawy, A.M. Kamel, A.S. Goda, G.R. Donia, A. Salah-Eldein, Comparison of heavy metals concentration in different tissues of four wild bird species, Advances in Animal and Veterinary Sciences 10(2) (2021) 212–450. https://doi.org/10.17582/journal.aavs/2022/10.2.307.315
[73] Q. Devalloir, C. Fritsch, G. Bangjord, B.J. Bårdsen, S. Bourgeon, I. Eulaers, J.O. Bustnes, Long-term monitoring of exposure to toxic and essential metals and metalloids in the tawny owl (Strix aluco): Temporal trends and influence of spatial patterns, Science of the Total Environment 876 (2023) 162710. https://doi.org/10.1016/j.scitotenv.2023.162710
[74] S. Subpiramaniyam, T. Kaliannan, P. Piruthiviraj, Deposition of absolute and relative airborne metals on eggshells: A field study, Environmental Science and Pollution Research 25 (2018) 2313–2319. https://doi.org/10.1007/s11356-017-0679-6
[75] T. Fischer, T. Kholiavko, W. Schaaf, M. Veste. Soil respiration responses of moss and lichen biocoenoses to moderate and severe rain events after summer drought in a temperate early‐successional ecosystem. Ecohydrology 16(7) (2023) e2578. https://doi.org/10.1002/eco.2578
[76] S. Chaudhuri, M. Roy. Global ambient air quality monitoring: Can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. Environment, Development and Sustainability 26 (2024) 5735–5773. https://doi.org/10.1007/s10668-023-03043-0
[77] C. Phaenark, S. Nasuansujit, N. Somprasong, W. Sawangproh. Moss biomass as effective biosorbents for heavy metals in contaminated water. Heliyon 10(12) (2024) e33097. https://doi.org/10.1016/j.heliyon.2024.e33097
[78] P. Lazo, S. Kane, F. Qarri, S. Allajbeu, L. Bekteshi. 15 Years of Moss Biomonitoring for Air Quality Assessment in Albania. Aerosol and Air Quality Research 24(7) (2024) 240011. https://doi.org/10.4209/aaqr.240011
[79] J. Łuczyńska, B. Paszczyk, M. Łuczyński. Fish as a bioindicator of heavy metals pollution in aquatic ecosystem of Pluszne Lake, Poland, and risk assessment for consumer's health. Ecotoxicology and Environmental Safety 153 (2018) 60-67. https://doi.org/10.1016/j.ecoenv.2018.01.057
[80] I. Simionov, D. Cristea, S. Petrea, A. Mogodan, R. Jijie, E. Ciornea, M. Nicoara, M. Rahoveanu, V. Cristea. Predictive Innovative Methods for Aquatic Heavy Metals Pollution Based on Bioindicators in Support of Blue Economy in the Danube River Basin. Sustainability 13(16) (2021) 8936. https://doi.org/10.3390/su13168936
[81] R. Yousif, M. Choudhary, S. Ahmed, Q. Ahmed. Review: Bioaccumulation of heavy metals in fish and other aquatic organisms from Karachi Coast, Pakistan. Nusantara Bioscience 13(1) (2021) 73–84 https://doi.org/10.13057/nusbiosci/n130111
[82] T. Moiseenko, N. Gashkina. Distribution and bioaccumulation of heavy metals (Hg, Cd and Pb) in fish: influence of the aquatic environment and climate. Environmental Research Letters 15(11) (2020) 115013. https://doi.org/10.1088/1748-9326/abbf7cƒ
[83] A. Oros. Bioaccumulation and Trophic Transfer of Heavy Metals in Marine Fish: Ecological and Ecosystem-Level Impacts. Journal of Xenobiotics 15(2) (2025) 59. https://doi.org/10.3390/jox15020059.
[84] S. Habib, S. Naz, F. Fazio, C. Cravana, M. Ullah, K. Rind, S. Attaullah, F. Filiciotto, K. Khayyam. Assessment and Bioaccumulation of Heavy Metals in Water, Fish (wild and Farmed) and Associated Human Health Risk. Biological Trace Element Research 202 (2023) 725-735. https://doi.org/10.1007/s12011-023-03703-2
[85] K.E. Hudelson, D.C. Muir, P.E. Drevnick, G. Köck, D. Iqaluk, X. Wang, J.L. Kirk, B.D. Barst, A. Grgicak-Mannion, R. Shearon, A.T. Fisk, Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada, Science of the Total Environment 678 (2019) 801–812. https://doi.org/10.1016/j.scitotenv.2019.04.453
[86] K. Szczepaniak, M. Biziuk, Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution, Environmental Research 93(3) (2003) 221–230. https://doi.org/10.1016/S0013-9351(03)00141-5
[87] O.B. Akpor, Heavy metal pollutants in wastewater effluents: Sources, effects and remediation, Advances in Bioscience and Bioengineering 2(4) (2014) 37. https://doi.org/10.11648/j.abb.20140204.11
[88] R.R. Behera, D.R. Satapathy, A. Majhi, Human health risk assessment model associated with PM2.5-bound metals in Paradip Port Township, India, Chemosphere 350 (2024) 141111. https://doi.org/10.1016/j.chemosphere.2024.141111
[89] A.O. Adegunwa, F.M. Adebiyi, O.I. Asubiojo, O.T. Ore, Chemical speciation, bioavailability and risk assessments of potentially toxic metals in rainwaters as indicators of air pollution, Pollution 9(1) (2023) 316–331. https://doi.org/10.22059/poll.2022.347219.1573
[90] A.A. Ammann, Inductively coupled plasma mass spectrometry (ICP-MS): A versatile tool, Journal of Mass Spectrometry 42(4) (2007) 419–427. https://doi.org/10.1002/jms.1206
[91] S. Shahrukh, S.A. Hossain, M.N. Huda, M. Moniruzzaman, M.M. Islam, M.A.A. Shaikh, M.E. Hossain, Air pollution tolerance, anticipated performance, and metal accumulation indices of four evergreen tree species in Dhaka, Bangladesh, Current Plant Biology 35 (2023) 100296. https://doi.org/10.1016/j.cpb.2023.100296
[92] H.J. Ye, X.F. Liao, S.L. Guo, X. Jiang, L. Yao, X.S. Chen, Development and application of continuous atmospheric heavy metals monitoring system based on X-ray fluorescence, Advanced Materials Research 518–523 (2012) 1510–1515. https://doi.org/10.4028/www.scientific.net/AMR.518-523.1510
[93] P. Kayee, W. Songphim, A. Parkpein, Using Thai native moss as bio-adsorbent for contaminated heavy metal in air, Procedia – Social and Behavioral Sciences 197 (2015) 1516–1522. https://doi.org/10.1016/j.sbspro.2015.07.312
[94] E. Steinnes, Atmospheric deposition of heavy metals in Norway studied by the analysis of moss samples using neutron activation analysis and atomic absorption spectrometry, Journal of Radioanalytical and Nuclear Chemistry 58(1–2) (1980) 387–391. https://doi.org/10.1007/BF02533811
[95] F.A. Nicholson, S.R. Smith, B.J. Alloway, C. Carlton-Smith, B.J. Chambers, An inventory of heavy metal inputs to agricultural soils in England and Wales, Science of the Total Environment 311(1–3) (2003) 205–219. https://doi.org/10.1016/S0048-9697(03)00139-6
[96] N. Zheng, J. Liu, Q. Wang, Z. Liang, Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast China, Science of the Total Environment 408(4) (2010) 726–733. https://doi.org/10.1016/j.scitotenv.2009.10.075
[97] O. Lindqvist, K. Johansson, L. Bringmark, B. Timm, M. Aastrup, A. Andersson, G. Hovsenius, L. Håkanson, Å. Iverfeldt, M. Meili, Mercury in the Swedish environment—Recent research on causes, consequences and corrective methods, Water, Air, and Soil Pollution 55 (1991) xi–261. https://doi.org/10.1007/BF00542429
[98] D. Obrist, J.L. Kirk, L. Zhang, E.M. Sunderland, M. Jiskra, N.E. Selin, A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use, Ambio 47 (2018) 116–140. https://doi.org/10.1007/s13280-017-1004-9
[99] G. Shi, Z. Chen, S. Xu, J. Zhang, L. Wang, C. Bi, J. Teng, Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China, Environmental Pollution 156(2) (2008) 251–260. https://doi.org/10.1016/j.envpol.2008.02.027
[100] J. Liang, C. Feng, G. Zeng, X. Gao, M. Zhong, X. Li, X. He, Y. Fang, Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China, Environmental Pollution 225 (2017) 681–690. https://doi.org/10.1016/j.envpol.2017.03.057
[101] L. Hernandez, A. Probst, J.L. Probst, E. Ulrich, Heavy metal distribution in some French forest soils: Evidence for atmospheric contamination, Science of the Total Environment 312(1–3) (2003) 195–219. https://doi.org/10.1016/S0048-9697(03)00223-7
[102] S.S. Huang, Q.L. Liao, M. Hua, X.M. Wu, K.S. Bi, C.Y. Yan, B. Chen, X.Y. Zhang, Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong District, Jiangsu Province, China, Chemosphere 67(11) (2007) 2148–2155. https://doi.org/10.1016/j.chemosphere.2006.12.043
[103] A. Lu, J. Wang, X. Qin, K. Wang, P. Han, S. Zhang, Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China, Science of the Total Environment 425 (2012) 66–74. https://doi.org/10.1016/j.scitotenv.2012.03.003
[104] M. Miraglia, H.J.P. Marvin, G.A. Kleter, P. Battilani, C. Brera, E. Coni, F. Cubadda, L. Croci, M.D. Santis, S. Dekkers, L. Filippi, R.W.A. Hutjes, M.Y. Noordam, M. Pisante, G. Piva, A. Prandini, L. Toti, G.J. van den Born, A. Vespermann, Climate change and food safety: An emerging issue with special focus on Europe, Food and Chemical Toxicology 47(5) (2009) 1009–1021. https://doi.org/10.1016/j.fct.2009.02.005
[105] L. Cisneros, M. Ibanescu, C. Keen, O. Lobato-Calleros, J. Niebla-Zatarain, Bibliometric study of family business succession between 1939 and 2017: Mapping and analysing authors’ networks, Scientometrics 117 (2018) 919–951. https://doi.org/10.1007/s11192-018-2889-1
[106] C. Peng, M. He, S.L. Cutrona, C.I. Kiefe, F. Liu, Z. Wang, Theme trends and knowledge structure on mobile health apps: Bibliometric analysis, JMIR mHealth and uHealth 8(7) (2020) e18212. https://doi.org/10.2196/18212
[107] J. Gan, Q. Cai, P. Galer, D. Ma, X. Chen, J. Huang, S. Bao, R. Luo, Mapping the knowledge structure and trends of epilepsy genetics over the past decade: A co-word analysis based on medical subject headings terms, Medicine 98(32) (2019) e16782. https://doi.org/10.1097/MD.0000000000016782
[108] O.O. Ayantobo, J.A. Awomeso, G. Oluwasanya, B.S. Bada, A.M. Taiwo, Gold mining in Igun Ijesha, Southwest Nigeria: Impacts and implications for water quality, American Journal of Environmental Sciences 10(3) (2014) 289–300. https://doi.org/10.3844/ajessp.2014.289.300
[109] Y. Liu, L. Cheng, F. Tian, Wet deposition of heavy metals in an arid city, Polish Journal of Environmental Studies 24 (2015) 1159–1164. https://doi.org/10.15244/pjoes/35983
[110] S. Nickel, W. Schröder, M. Schaap, Estimating atmospheric deposition of heavy metals in Germany using LOTOS-EUROS model calculations and data from biomonitoring programmes, Pollution Atmosphérique 226 (2015) 1–20. https://doi.org/10.4267/pollution-atmospherique.4894
[111] R. Milošević, S.M. Kurilić, Human health risk assessment of industry impact in Kikinda industry zone, Recycling and Sustainable Development 14 (2021) 1–10. https://doi.org/10.5937/ror2101001m
[112] X. Zhang, T. Zhong, L. Liu, X. Ouyang, Impact of soil heavy metal pollution on food safety in China, PLoS ONE 10(8) (2015) e0135182. https://doi.org/10.1371/journal.pone.0135182
[113] Y. Fan, T. Zhu, M. Li, J. He, R. Huang, Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China, Journal of Healthcare Engineering 2017 (2017) 1–9. https://doi.org/10.1155/2017/4124302
[114] J. Gao, H. Tian, K. Cheng, L. Lu, Y. Wang, Y. Wu, C. Zhu, K. Liu, J. Zhou, X. Liu, J. Chen, J. Hao, Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation, and bioavailability, Atmospheric Environment 99 (2014) 257–265. https://doi.org/10.1016/j.atmosenv.2014.08.081
[115] S. Sinha, A. Singh, D. Sinha, R. Chatterjee, A review on bryophytes as key bio-indicators to monitor heavy metals in the atmosphere, International Journal of Plant and Environment 7(1) (2021) 49–62. https://doi.org/10.18811/ijpen.v7i01.5
[116] T. Moreno, X. Querol, A. Alastuey, M. Viana, P. Salvador, M.S. de la Campa, B. Artiñano, J. de la Rosa, W. Gibbons, Variations in atmospheric PM trace metal content in Spanish towns: Illustrating the chemical complexity of the inorganic urban aerosol cocktail, Atmospheric Environment 40(35) (2006) 6791–6803. https://doi.org/10.1016/j.atmosenv.2006.05.074
[117] S. Liu, C. Zhu, H. Tian, Y. Wang, K. Zhang, B. Wu, X. Liu, Y. Hao, W. Liu, X. Bai, S. Lin, Y. Wu, P. Shao, H. Liu, Spatiotemporal variations of ambient concentrations of trace elements in a highly polluted region of China, Journal of Geophysical Research: Atmospheres 124(7) (2019) 4186–4202. https://doi.org/10.1029/2018JD029562
[118] D.T. Stewart, K. Noguera-Oviedo, V. Lee, S. Banerjee, D.F. Watson, D.S. Aga, Quantum dots exhibit less bioaccumulation than free cadmium and selenium in the earthworm Eisenia Andrei, Environmental Toxicology and Chemistry 32(6) (2013) 1288–1294. https://doi.org/10.1002/etc.2182
[119] D.A. Navarro, S. Banerjee, D.F. Watson, D.S. Aga, Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots, Environmental Science & Technology 45(15) (2011) 6343–6349. https://doi.org/10.1021/es201010f
[120] M. Bigalke, A.E. Ulrich, A. Rehmus, A. Keller, Accumulation of cadmium and uranium in arable soils in Switzerland, Environmental Pollution 221 (2017) 85–93. https://doi.org/10.1016/j.envpol.2016.11.035
[121] Y. Song, W. Li, Y. Xue, H. Zhou, W. Wang, C. Liu, Impact of industrial pollution of cadmium on traditional crop planting areas and land management: A case study in Northwest China, Land 10(12) (2021) 1364. https://doi.org/10.3390/land10121364
[122] Ö. Işınkaralar, E.P. Bayraktar, Urban public spaces, public health, and heavy metal pollution threatening in Ankara city center: Strategies for urban planning, Kastamonu University Journal of Engineering and Sciences 8(2) (2022) 116–121. https://doi.org/10.55385/kastamonujes.1177807
[123] R.M. Harrison, Urban atmospheric chemistry: A very special case for study, NPJ Climate and Atmospheric Science 1 (2018) 20175. https://doi.org/10.1038/s41612-017-0010-8
[124] A. Boynard, C. Clerbaux, L. Clarisse, S. Safieddine, M. Pommier, M. Van Damme, S. Bauduin, C. Oudot, J. Hadji-Lazaro, D. Hurtmans, P.F. Coheur, First simultaneous space measurements of atmospheric pollutants in the boundary layer from IASI: A case study in the North China Plain, Geophysical Research Letters 41(2) (2014) 645–651. https://doi.org/10.1002/2013GL058333
[125] P. Kumar, S. Hama, H. Omidvarborna, A. Sharma, J. Sahani, K. Abhijith, S.E. Debele, J.C. Zavala-Reyes, Y. Barwise, A. Tiwari, Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities, Sustainable Cities and Society 62 (2020) 102382. https://doi.org/10.1016/j.scs.2020.102382
[126] K. Grodzińska, G. Szarek, B. Godzik, Heavy metal deposition in Polish national parks—Changes during ten years, Water, Air, and Soil Pollution 49 (1990) 409–419. https://doi.org/10.1007/BF00507079
[127] T. Berg, E. Steinnes, Use of mosses (Hylocomium splendens and Pleurozium schreberi) as biomonitors of heavy metal deposition: From relative to absolute deposition values. Environmental Pollution 98(1) (1997) 61–71. https://doi.org/10.1016/S0269-7491(97)00103-6
[128] L. Galsomiès, S. Ayrault, F. Carrot, C. Deschamps, M.A. Letrouit-Galinou, Interspecies calibration in mosses at regional scale—Heavy metal and trace element results from Île-de-France, Atmospheric Environment 37(2) (2003) 241–251. https://doi.org/10.1016/S1352-2310(02)00831-2
[129] J. Sucharová, I. Suchara, Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques. Part I: Relative and absolute current atmospheric deposition levels detected by moss analyses, Water, Air, and Soil Pollution 153 (2004) 205–228. https://doi.org/10.1023/B:WATE.0000019944.33209.83
[130] M.Z. Abdullah, A. Saat, Z. Hamzah, Assessment of the impact of petroleum and petrochemical industries to the surrounding areas in Malaysia using mosses as bioindicators supported by multivariate analysis, Environmental Monitoring and Assessment 184(6) (2011) 3959–3969. https://doi.org/10.1007/s10661-011-2236-y
[131] Y. Jiang, M. Fan, R. Hu, J. Zhao, Y. Wu, Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas, International Journal of Environmental Research and Public Health 15(6) (2018) 1105. https://doi.org/10.3390/ijerph15061105
[132] A.N. Amadi, E. Ebieme, A. Musa, P.I. Olashinde, I.M. Ameh, A. Shuaibu, Utility of pollution indices in assessment of soil quality around Madaga gold mining site, Niger State, North-Central Nigeria, Ife Journal of Science 19(2) (2017) 417. https://doi.org/10.4314/ijs.v19i2.22
[133] S. Banerjee, S.K. Maiti, A. Kumar, Metal contamination in water and bioaccumulation of metals in planktons, molluscs, and fishes in the Jamshedpur stretch of Subarnarekha River of Chotanagpur Plateau, India, Water and Environment Journal 29(2) (2015) 207–213. https://doi.org/10.1111/wej.12108
[134] Q. Li, J. Zhang, W. Ge, P. Sun, Y. Han, H. Qiu, S. Zhou, Geochemical baseline establishment and source-oriented ecological risk assessment of heavy metals in lime concretion black soil from a typical agricultural area, International Journal of Environmental Research and Public Health 18(13) (2021) 6859. https://doi.org/10.3390/ijerph18136859
[135] P. Xiao, Z. Yong, X. Li, J. Xu, C. Zhao, Assessment of heavy metals in agricultural land: A literature review based on bibliometric analysis, Sustainability 13(8) (2021) 4559. https://doi.org/10.3390/su13084559
[136] G. Udom, B. Turyahabwe, A. Aturamu, O. Aziakpono, R. Agbana, O. Joseph, N. Udom, N. Mugide, O. Odey, H. Olot, O. Orisakwe, Heavy metal and metalloid pollution: a systematic review of health implications for pregnant women, children, and geriatrics in the East African region, Environmental Advances 19 (2025) 100620. https://doi.org/10.1016/j.envadv.2025.100620.
[137] Z. Cha, X. Zhang, K. Zhang, G. Zhou, J. Gao, S. Sun, Y. Gao, H. Liu, Atmospheric Heavy Metal Pollution Characteristics and Health Risk Assessment Across Various Type of Cities in China, Toxics 13(3) (2025) 220. https://doi.org/10.3390/toxics13030220.
[138] S.A. Damon, D.J. Rupert, R. Pryzby, Air aware: improving use of an existing air quality and health tool, Journal of Health Communication 27(1) (2022) 1-7. https://doi.org/10.1080/10810730.2021.2025173
[139] M.Z. Jeddi, A. Virgolino, P. Fantke, N.B. Hopf, K.S. Galea, S. Remy, S. Viegas, V. Mustieles, M.F. Fernandez, N. von Goetz, J.L. Vicente, J. Slobodnik, L. Rambaud, S. Denys, A. St-Amand, S.F. Nakayama, T. Santonen, R. Barouki, R. Pasanen-Kase, H.G.J. Mol, J. Bessems, A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles, International Journal of Hygiene and Environmental Health, 238 (2021) 113826. https://doi.org/10.1016/j.ijheh.2021.113826
[140] K.E. Adesina, C.J. Burgos, T.R. Grier, A.S.M. Sayam, A.J. Specht, Ways to Measure Metals: From ICP-MS to XRF, Current Environmental Health Reports 12(7) (2025). https://doi.org/10.1007/s40572-025-00473-y
[141] A.I. Adebayo, K.T. Olubanjo, A.M. Fadeke, J.J. Uyanah, A.T. Zirra, W.A. Igbaoreto, P.D. Fakoyede, From static sampling to dynamic insights: The future of water quality monitoring with sensors, IOT, and drones, Science World Journal 20(1) (2024) 454-466. https://doi.org/10.4314/swj.v20i1.61
[142] E. Sholkovitz, G. Allsup, D. Hosom, M. Purcell, An autonomous aerosol sampler/elemental analyzer designed for ocean buoys and remote land sites, Atmospheric Environment, 35(16) (2001) 2969-2975. https://doi.org/10.1016/S1352-2310(01)00068-1
[143] Q. Dong, Y. Li, X. Wei, L. Jiao, L. Wu, Z. Dong, Y. An, A city-level dataset of heavy metal emissions into the atmosphere across China from 2015–2020, Scientific Data, 11 (2024) 258. https://doi.org/10.1038/s41597-024-03089-3.
[144] J. Zheng, P. Wang, H. Shi, C. Zhuang, Y. Deng, X. Yang, F. Huang, R. Xiao, Quantitative source apportionment and driver identification of soil heavy metals using advanced machine learning techniques, The Science of the Total Environment 873 (2023) 162371. https://doi.org/10.1016/j.scitotenv.2023.162371.
[145] J. Mastin, A. Saini, J. Schuster, T. Harner, E. Dabek-Zlotorzynska, V. Celo, E. Gaga, Trace Metals in Global Air: First Results from the GAPS and GAPS Megacities Networks, Environmental Science & Technology 57 (2023) 14661-14673. https://doi.org/10.1021/acs.est.3c05733.
[146] B. Zawisza, K. Pytlakowska, B. Feist, M. Polowniak, A. Kita, R. Sitko, Determination of rare earth elements by spectroscopic techniques: a review, Journal of Analytical Atomic Spectrometry 26(12) (2011) 2373-2390. https://doi.org/10.1039/C1JA10140D
[147] L. Chen, S. Zhou, S. Wu, C. Wang, B. Li, Y. Li, J. Wang, Combining emission inventory and isotope ratio analyses for quantitative source apportionment of heavy metals in agricultural soil, Chemosphere 204 (2018) 140-147. https://doi.org/10.1016/j.chemosphere.2018.04.002.
[148] L. Popoola, S. Adebanjo, B. Adeoye, Assessment of atmospheric particulate matter and heavy metals: a critical review, International Journal of Environmental Science and Technology 15 (2018) 935-948. https://doi.org/10.1007/s13762-017-1454-4.

