New variants of <i>N</i> = 3, 4 superconformal mechanics

Additional data

Submitted: 30.10.2025; Accepted: 19.12.2025; Published 26.12.2025;
Views: 101; Downloaded: 42

How to Cite

N. Kozyrev, S. Krivonos. "New variants of N = 3, 4 superconformal mechanics" Natural Sci. Rev. 2 100505 (2025)
https://doi.org/10.54546/NaturalSciRev.100505
N. Kozyrev1,a, S. Krivonos1,2,b
  • 1Joint Institute for Nuclear Research, 141980 Dubna, Russia
  • 2Tomsk State University of Control Systems and Radioelectronics (TUSUR), Lenin Ave. 40, 634050 Tomsk, Russia
  • ankozyrev@theor.jinr.ru
  • bkrivonos@theor.jinr.ru
DOI: 10.54546/NaturalSciRev.100505
Keywords: superconformal mechanics, N-extended supersymmetry, integrable system, Schwarzians
Topics: Physics , High Energy Physics (Theory) , Mathematical physics
PDF

Abstract

We construct superconformal mechanics with N = 3 and N = 4 supersymmetries that were inspired by analogy with the supersymmetric Schwarzian mechanics. The Schwarzian, being another system with superconformal symmetry, provides insight into the field content of supersymmetric mechanics, most notably, on the number and properties of the fermionic fields involved. Adding more fermionic fields (four in the N = 3 case and eight in the N = 4 case) made it possible to construct systems possessing maximal superconformal symmetries in N = 3 and N = 4, namely osp(3|2) and D(1, 2; α). In the case of N = 4 supersymmetry, we explicitly construct a new variant of N = 4 superconformal mechanics in which all bosonic subalgebras of the D(1, 2; α) superalgebra have a bosonic realization. In addition, the constructed systems involve the so(3) currents whose parameterization is not fixed, which allows one to consider different underlying geometries.

Acknowledgements

We thank Armen Nersessian for useful discussions on the subject of this paper. SK acknowledges partial financial support of the Ministry of Science and Higher Education of the Russian Federation, Government Order for 2023–2025, Project No. FEWM-2023-0015 (TUSUR).

References

[1] H. T. Özer, A. Filiz, On the N = 3 and N = 4 superconformal holographic dictionary, Eur. Phys. J. C 85 (2025) 1. arXiv:2407.17235 [hep-th].

[2] Chen-guang Hao, Bin Chen, Xing-chang Song, On fermionic T-duality of sigma modes on AdS backgrounds, JHEP 0912 (2009) 051. arXiv:0909.5485 [hep-th].

[3] Y. Lozano, C. Nunez, A. Ramirez, S. Speziali, New AdS2 backgrounds and N = 4 conformal quantum mechanics, JHEP 03 (2021) 277. arXiv:2011.00005 [hep-th].

[4] Y. Lozano, N. T. Macpherson, N. Petri, C. Risco, New AdS3/CFT2 pairs in massive IIA with (0,4) and (4,4) supersymmetries, JHEP 09 (2022) 130. arXiv:2206.13541 [hep-th].

[5] A. Galajinsky, N = 3 super-Schwarzian from OSp(3|2) invariants, Phys. Lett. B 811 (2020) 135885. arXiv:2009.13064 [hep-th].

[6] N. Kozyrev, S. Krivonos, (Super)Schwarzian mechanics, JHEP 03 (2022) 120. arXiv:2111.04643 [hep-th].

[7] S. Fubini, E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245 (1984) 17.

[8] E. Ivanov, S. Krivonos, V. Leviant, Geometric superfield approach to superconformal mechanics, J. Phys. A: Math. Gen. 22 (1989) 4201.

[9] S. Fedoruk, E. Ivanov, O. Lechtenfeld, OSp(4|2) superconformal mechanics, JHEP 08 (2009) 081. arXiv:0905.4951 [hep-th].

[10] T. Hakobyan, S. Krivonos, O. Lechtenfeld, A. Nersessian, Hidden symmetries of integrable conformal mechanical systems, Phys. Lett. A 374 (2010) 801. arXiv:0908.3290 [hep-th].

[11] E. Ivanov, S. Krivonos, O. Lechtenfeld, N = 4, d = 1 supermultiplets from nonlinear realizations of D(2, 1; α), Class. Quant. Grav. 21 (2004) 1031. arXiv:hep-th/0310299 [hep-th].

[12] E. Ivanov, S. Krivonos, O. Lechtenfeld, New variant of N = 4 superconformal mechanics, JHEP 03 (2003) 014. arXiv:hep-th/0212303 [hep-th].

[13] N. Kozyrev, S. Krivonos, N = 4 supersymmetric Schwarzian with D(1, 2; α) symmetry, Phys. Rev. D 105 (8) (2022) 085010. arXiv:2112.14481 [hep-th].

[14] A. Galajinsky, N = 4 superconformal mechanics from the su(2) perspective, JHEP 02 (2015) 091. arXiv:1412.4467 [hep-th].

[15] A. Galajinsky, O. Lechtenfeld, Spinning extensions of D(1, 2; α) superconformal mechanics, JHEP 03 (2019) 069. arXiv:1902.06851 [hep-th].

[16] S. Krivonos, A. Nersessian, Note on supersymmetric mechanics with spin-orbit interaction, in: Proc. of the Workshop “Supersymmetries and Quantum Symmetries”, July 29 – Aug. 3, 2024, Dubna. arXiv:2504.11935.

[17] A. Galajinsky, Couplings in D(2, 1; α) superconformal mechanics from the SU(2) perspective, JHEP 03 (2017) 054. arXiv:1702.01955 [hep-th].

[18] S. Fedoruk, E. Ivanov, New realizations of the supergroup D(2, 1; α) in N = 4 superconformal mechanics, JHEP 10 (2015) 087. arXiv:1507.08584 [hep-th].

[19] S. Fedoruk, E. Ivanov, A. Smilga, N = 4 mechanics with diverse (4, 4, 0) multiplets: Explicit examples of hyper-Kahler with torsion, Clifford Kahler with torsion, and octonionic Kahler with torsion geometries, J. Math. Phys. 55 (2014) 052302. arXiv:1309.7253 [hep-th].

[20] S. Fedoruk, E. Ivanov, O. Lechtenfeld, New D(2, 1; α) mechanics with spin variables, JHEP 04 (2010) 129. arXiv:0912.3508 [hep-th].

[21] S. Bellucci, S. Krivonos, Potentials in N = 4 superconformal mechanics, Phys. Rev. D 80 (2009) 065022. arXiv:0905.4633 [hep-th].

[22] Z. Kuznetsova, M. Rojas, F. Toppan, Classification of irreps and invariants of the N -extended supersymmetric quantum mechanics, JHEP 03 (2006) 098. arXiv:hep-th/0511274.

[23] S. Khodaee, F. Toppan, Critical scaling dimension of D-module representations of N = 4, 7, 8 superconformal algebras and constraints on superconformal mechanics, J. Math. Phys. 53 (2012) 103518. arXiv:1208.3612 [hep-th].

[24] L. Frappat, P. Sorba, A. Sciarrino, Dictionary on Lie superalgebras, Academic Press, 2000, 410 p. arXiv:hep-th/9607161.

[25] A. Van Proeyen, Tools for supersymmetry. arXiv:hep-th/9910030.

[26] E. Khastyan, S. Krivonos, A. Nersessian, Note on N = 8 supersymmetric mechanics with dynamical and semi-dynamical multiplets, Int. J. Mod. Phys. A 40 (02) (2025) 2450165. arXiv:2408.14958 [hep-th].

[27] S. Krivonos, A. Nersessian, N = 8 superconformal mechanics: Direct construction, Phys. Lett. B 863 (2025) 139373. arXiv:2411.18345 [hep-th].

[28] S. Krivonos, A. Nersessian, Two faces of N = 7, 8 superconformal mechanics, Phys. Rev. D 111 (12) (2025) 125025. arXiv:2504.13651 [hep-th].

[29] N. Kozyrev, S. Krivonos, Generalized Schwarzians, Phys. Rev. D 107 (2) (2023) 026018. arXiv:2211.14021 [hep-th].