ZFITTER: Theoretical calculations and precision tests of the Standard Model

Additional data

Submitted: 19.12.2025; Accepted: 26.01.2026; Published 18.02.2026;
Views: 0; Downloaded: 0

How to Cite

A. B.  Arbuzov, L. V.  Kalinovskaya, A. G.  Olshevskiy, V. L.  Yermolchyk. "ZFITTER: Theoretical calculations and precision tests of the Standard Model" Natural Sci. Rev. 3 200601 (2026)
https://doi.org/10.54546/NaturalSciRev.200601
A. B.  Arbuzov1,2,a, L. V.  Kalinovskaya1,3, A. G.  Olshevskiy1,3, V. L.  Yermolchyk1,2
  • 1Joint Institute for Nuclear Research, Dubna, Russia
  • 2Dubna State University, Dubna, Russia
  • 3Moscow State University, Moscow, Russia
  • aarbuzov@theor.jinr.ru
DOI: 10.54546/NaturalSciRev.200601
Keywords: the Standard Model, radiative corrections, electroweak interactions, ZFITTER
Topics: Physics , High Energy Physics (Theory) , High Energy Physics (Experiment) , Historical / Anniversary Reviews , 70th anniversary of JINR
PDF

Abstract

The development of the ZFITTER computer code is described in the context of high-precision tests of the Standard Model during the LEP era. The features of the code that allowed it to become a standard tool for the theoretical interpretation of electroweak observables are analyzed. Prospects for further development of ZFITTER and its contribution to research projects at future electron–positron colliders are discussed. Numerical illustrations are provided of the effects of parameter shifts and the addition of new results for higher-order radiative corrections.

Acknowledgements

We gratefully acknowledge the invaluable contributions of all authors involved in the development of the ZFITTER and DIZET codes.

References

[1] S. Schael et al., Precision electroweak measurements on the Z resonance, Physics Reports 427 (2006) 257–454. arXiv:hep-ex/0509008, doi:10.1016/j.physrep.2005.12.006.

[2] G. Altarelli, R. Kleiss, C. Verzegnassi (Eds.), Z Physics at LEP-1, Proceedings of the Workshop, Geneva, Switzerland, Sept. 4–5, 1989. Vol. 1: Standard Physics, CERN Yellow Reports: Conference Proceedings, 1989. doi:10.5170/CERN-1989-008-V-1.

[3] D. Y. Bardin et al., Electroweak Working Group Report, in: Workshop Group on Precision Calculations for the Z Resonance (2nd meeting held Mar. 31, 3rd meeting held Jun. 13), 1997. arXiv:hep-ph/9709229.

[4] W. F. L. Hollik, Radiative corrections in the Standard Model and their role for precision tests of the electroweak theory, Fortschritte der Physik 38 (1990) 165–260. doi:10.1002/prop.2190380302.

[5] W. F. L. Hollik, Program WOH, unpublished.

[6] V. Novikov, L. Okun, A. N. Rozanov, M. Vysotsky, LEPTOP, Moscow, ITEP, Mar. 1995. arXiv: hep-ph/9503308.

[7] G. Montagna, F. Piccinini, O. Nicrosini, G. Passarino, R. Pittau, TOPAZ0: A program for computing observables and for fitting cross-sections and forward-backward asymmetries around the Z0 peak, Computer Physics Communications 76 (1993) 328–360. doi:10.1016/0010-4655(93) 90060-P.

[8] G. Montagna, O. Nicrosini, G. Passarino, F. Piccinini, TOPAZ0 2.0: A program for computing deconvoluted and realistic observables around the Z0 peak, Computer Physics Communications 93 (1996) 120–126. arXiv:hep-ph/9506329, doi:10.1016/0010-4655(95)00127-1.

[9] G. Montagna, O. Nicrosini, F. Piccinini, G. Passarino, TOPAZ0 4.0: A new version of a computer program for evaluation of deconvoluted and realistic observables at LEP-1 and LEP-2, Computer Physics Communications 117 (1999) 278–289. arXiv:hep-ph/9804211, doi:10.1016/S0010-4655(98)00080-0.

[10] D. Y. Bardin et al., ZFITTER: An analytical program for fermion pair production in e+e− annihilation, May 1992. https://lib-extopc.kek.jp/preprints/PDF/1992/9207/9207126.pdf, arXiv:hep-ph/9412201.

[11] D. Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, T. Riemann, ZFITTER v.6.21: A semianalytical program for fermion pair production in e+e− annihilation, Computer Physics Communications 133 (2001) 229–395. arXiv:hep-ph/9908433, doi:10.1016/ S0010-4655(00)00152-1.

[12] The LEP Electroweak Working Group. https://lepewwg.web.cern.ch/lepewwg.

[13] A. Akhundov, A. Arbuzov, S. Riemann, T. Riemann, The ZFITTER project, Physics of Particles and Nuclei 45 (3) (2014) 529–549. arXiv:1302.1395, doi:10.1134/S1063779614030022.

[14] R. P. Feynman, M. Gell-Mann, Theory of the Fermi interaction, Physical Review 109 (1958) 193–198. doi:10.1103/PhysRev.109.193.

[15] E. C. G. Sudarshan, R. E. Marshak, Chirality invariance and the universal Fermi interaction, Physical Review 109 (1958) 1860–1862. doi:10.1103/PhysRev.109.1860.2.

[16] L. Michel, Interaction between four half spin particles and the decay of the µ meson, Proceedings of the Physical Society, Section A 63 (1950) 514–531. doi:10.1088/0370-1298/63/5/311.

[17] T. Kinoshita, A. Sirlin, Muon decay with parity nonconserving interactions and radiative corrections in the two-component theory, Physical Review 107 (1957) 593–599. doi:10.1103/PhysRev. 107.593.

[18] T. Kinoshita, A. Sirlin, Radiative corrections to Fermi interactions, Physical Review 113 (1959) 1652–1660. doi:10.1103/PhysRev.113.1652.

[19] G. Passarino, M. J. G. Veltman, One loop corrections for e+e− annihilation into µ+µ− in the Weinberg model, Nuclear Physics B 160 (1979) 151–207. doi:10.1016/0550-3213(79)90234-7.

[20] G. ’t Hooft, M. J. G. Veltman, Scalar one loop integrals, Nuclear Physics B 153 (1979) 365–401. doi:10.1016/0550-3213(79)90605-9.

[21] D. Bardin, ZBIZON: A program package for the precision calculation of observables or the process e+e− → F+F− around the Z peak, L3 Internal Note 679, Sept. 1989.

[22] D. Y. Bardin, M. S. Bilenky, A. Sazonov, Y. Sedykh, T. Riemann, M. Sachwitz, QED corrections with partial angular integration to fermion pair production in e+e− annihilation, Physics Letters B 255 (1991) 290–296. arXiv:hep-ph/9801209, doi:10.1016/0370-2693(91)90250-T.

[23] A. A. Akhundov, D. Y. Bardin, T. Riemann, Hunting the hidden standard Higgs, Physics Letters B 166 (1986) 111–112. doi:10.1016/0370-2693(86)91166-4.

[24] D. Y. Bardin, M. S. Bilenky, A. Chizhov, A. Sazonov, O. Fedorenko, T. Riemann, M. Sachwitz, Analytic approach to the complete set of QED corrections to fermion pair production in e+e− annihilation, Nuclear Physics B 351 (1991) 1–48. arXiv:hep-ph/9801208, doi: 10.1016/0550-3213(91)90080-H.

[25] P. C. Christova, M. Jack, T. Riemann, Hard photon emission in e+e− → anti-ff with realistic cuts, Physics Letters B 456 (1999) 264–269. arXiv:hep-ph/9902408, doi:10.1016/S0370-2693(99)00528-6.

[26] D. Y. Bardin, M. S. Bilenky, T. Riemann, M. Sachwitz, H. Vogt, DIZET: A program package for the calculation of electroweak one loop corrections for the process e+e− → f+f− around the Z0 peak, Computer Physics Communications 59 (1990) 303–312. doi:10.1016/0010-4655(90) 90179-5.

[27] D. Y. Bardin, P. K. Khristova, O. M. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 1. The one loop diagrammar, Nuclear Physics B 175 (1980) 435–461. doi:10.1016/0550-3213(80)90021-8.

[28] D. Y. Bardin, O. M. Fedorenko, On high order effects for fermion elastic scattering processes in Weinberg–Salam theory. 1. Renormalization scheme, JINR Preprint P2-11413, Dubna, 1978.

[29] A. A. Akhundov, D. Y. Bardin, T. Riemann, Electroweak one loop corrections to the decay of the neutral vector boson, Nuclear Physics B 276 (1986) 1–13. doi:10.1016/0550-3213(86)90014-3.

[30] D. Y. Bardin, S. Riemann, T. Riemann, Electroweak one loop corrections to the decay of the charged vector boson, Zeitschrift f¨ur Physik C 32 (1986) 121–125. doi:10.1007/BF01441360.

[31] A. B. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. W. Grunewald, K. Monig, S. Riemann, T. Riemann, ZFITTER: A semi-analytical program for fermion pair production in e+e− annihilation, from version 6.21 to version 6.42, Computer Physics Communications 174 (2006) 728–758. arXiv:hep-ph/0507146, doi:10.1016/j.cpc.2005.12.009.

[32] A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: A simple renormalization framework, Physical Review D 22 (1980) 971–981. doi:10.1103/PhysRevD.22.971.

[33] D. Y. Bardin, C. Burdik, P. C. Khristova, T. Riemann, Electroweak radiative corrections to deep inelastic scattering at HERA. Neutral current scattering, Zeitschrift f¨ur Physik C 42 (1989) 679. doi:10.1007/BF01557676.

[34] D. Y. Bardin, P. K. Khristova, O. M. Fedorenko, On the lowest order electroweak corrections to spin 1/2 fermion scattering. 2. The one loop amplitudes, Nuclear Physics B 197 (1982) 1–44. doi:10.1016/0550-3213(82)90152-3.

[35] D. Y. Bardin, M. Grunewald, G. Passarino, Precision Calculation Project Report, Feb. 1999. arXiv:hep ph/9902452.

[36] S. Eidelman, F. Jegerlehner, Hadronic contributions to (g−2) of the leptons and to the effective fine structure constant α(M2Z), Zeitschrift f¨ur Physik C 67 (1995) 585–602. arXiv:hep-ph/219502298, doi:10.1007/BF01553984.

[37] G. Degrassi, P. Gambino, A. Sirlin, Precise calculation of M(W), sin2θ(W)(M/Z), and sin2θlept eff, Physics Letters B 394 (1997) 188–194. arXiv:hep-ph/9611363, doi:10.1016/S0370-2693(96) 01677-2.

[38] G. Degrassi, P. Gambino, Two loop heavy top corrections to the Z0 boson partial widths, Nuclear Physics B 567 (2000) 3–31. arXiv:hep-ph/9905472, doi:10.1016/S0550-3213(99)00729-4.

[39] B. A. Kniehl, Two loop corrections to the vacuum polarizations in perturbative QCD, Nuclear Physics B 347 (1990) 86–104. doi:10.1016/0550-3213(90)90552-O.

[40] D. Y. Bardin, A. Leike, T. Riemann, M. Sachwitz, Energy dependent width effects in e+e− annihilation near the Z boson pole, Physics Letters B 206 (1988) 539–542. doi:10.1016/0370-2693(88)91627-9.

[41] F. A. Berends, W. L. van Neerven, G. J. H. Burgers, Higher order radiative corrections at LEP energies, Nuclear Physics B 297 (1988) 429, [Erratum: Nucl. Phys. B 304 (1988) 921]. doi:10.1016/0550-3213(88)90313 6.

[42] M. Skrzypek, Leading logarithmic calculations of QED corrections at LEP, Acta Physica Polonica B 23 (1992) 135–172.

[43] E. A. Kuraev, V. S. Fadin, On radiative corrections to e+e− single photon annihilation at high-energy, Soviet Journal of Nuclear Physics 41 (1985) 466–472.

[44] F. Boudjema et al., Standard Model Processes, in: AGS/RHIC Users Annual Meeting, 1996. arXiv:hep ph/9601224.

[45] D. Y. Bardin, M. S. Bilenky, W. Beenakker, F. A. Berends, W. L. van Neerven, S. van der Marck, G. Burgers, W. Hollik, T. Riemann, M. Sachwitz, Z Line Shape, in: LEP Physics Workshop, 1989. doi:10.5170/CERN-1989-008-V-1.89.

[46] M. Steinhauser, Leptonic contribution to the effective electromagnetic coupling constant up to three loops, Physics Letters B 429 (1998) 158–161. arXiv:hep-ph/9803313, doi:10.1016/S0370-2693(98)00503-6.

[47] D. R. Yennie, S. C. Frautschi, H. Suura, The infrared divergence phenomena and high-energy processes, Annals of Physics 13 (1961) 379–452. doi:10.1016/0003-4916(61)90151-8.

[48] M. Kobel et al., Two-Fermion Production in Electron–Positron Collisions: Two-Fermion Working Group Report, in: LEP2 Monte Carlo Workshop, 2000. arXiv:hep-ph/0007180, doi:10.5170/CERN-2000-009.269.

[49] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, J. Rittinger, Complete O(α4s) QCD corrections to hadronic Z decays, Physical Review Letters 108 (2012) 222003. arXiv:1201.5804, doi:10.1103/PhysRevLett.108.222003.

[50] A. Leike, T. Riemann, J. Rose, S matrix approach to the Z line shape, Physics Letters B 273 (1991) 513 518. arXiv:hep-ph/9508390, doi:10.1016/0370-2693(91)90307-C.

[51] T. Riemann, Cross-section asymmetries around the Z peak, Physics Letters B 293 (1992) 451–456. arXiv:hep-ph/9506382, doi:10.1016/0370-2693(92)90911-M.

[52] SANC homepage. http://sanc.jinr.ru/zfitter.

[53] A. Arbuzov, D. Y. Bardin, J. Blumlein, L. Kalinovskaya, T. Riemann, HECTOR 1.00: A program for the calculation of QED, QCD and electroweak corrections to ep and l±N deep inelastic neutral and charged current scattering, Computer Physics Communications 94 (1996) 128–184. arXiv:hep-ph/9511434, doi:10.1016/0010-4655(96)00005-7.

[54] J. H. Field, T. Riemann, BHAGENE3: A Monte Carlo event generator for lepton pair production and wide angle Bhabha scattering in e+e− collisions near the Z peak, Computer Physics Communications 94 (1996) 53–87. arXiv:hep-ph/9507401, doi:10.1016/0010-4655(95)00131-X.

[55] S. Jadach, B. F. L. Ward, Z. Was, The Monte Carlo program KORALZ, for the lepton or quark pair production at LEP/SLC energies: From version 4.0 to version 4.04, Computer Physics Communications 124 (2000) 233–237. arXiv:hep-ph/9905205, doi:10.1016/S0010-4655(99)00437-3.

[56] A. Arbuzov, J. Gluza, L. Kalinovskaya, S. Riemann, T. Riemann, V. Yermolchyk, Computer package DIZET v. 6.45, Computer Physics Communications 291 (2023) 108846. arXiv:2301.07168, doi:10.1016/j.cpc.2023.108846.

[57] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, The two-loop electroweak bosonic corrections to sin2θb eff, Physics Letters B 762 (2016) 184–189. arXiv:1607.08375, doi:10.1016/j.physletb.2016.09.012.

[58] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, J. Usovitsch, Electroweak pseudo-observables and Z-boson form factors at two-loop accuracy, Journal of High Energy Physics 08 (2019) 113. arXiv:1906.08815, doi:10.1007/JHEP08(2019)113.

[59] A. Freitas, W. Hollik, W. Walter, G. Weiglein, Electroweak two loop corrections to the MW −MZ mass correlation in the Standard Model, Nuclear Physics B 632 (2002) 189–218, [Erratum: Nucl. Phys. B 666 (2003) 305–307]. arXiv:hep-ph/0202131, doi:10.1016/S0550-3213(02)00243-2.

[60] A. Djouadi, P. Gambino, Electroweak gauge bosons selfenergies: Complete QCD corrections, Physical Review D 49 (1994) 3499–3511, [Erratum: Phys. Rev. D 53 (1996) 4111]. arXiv: hep-ph/9309298, doi:10.1103/PhysRevD.49.3499.

[61] L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, O(αα2s) correction to the electroweak ρ parameter, Physics Letters B 336 (1994) 560–566, [Erratum: Phys. Lett. B 349 (1995) 597–598]. arXiv:hep-ph/9406363, doi:10.1016/0370-2693(94)90573-8.

[62] K. G. Chetyrkin, J. H. Kuhn, M. Steinhauser, Corrections of order O(GFM2tα2s) to the ρ parameter, Physics Letters B 351 (1995) 331–338. arXiv:hep-ph/9502291, doi:10.1016/0370-2693(95)00380-4.

[63] K. G. Chetyrkin, J. H. Kuhn, M. Steinhauser, QCD corrections from top quark to relations between electroweak parameters to order α2s, Physical Review Letters 75 (1995) 3394–3397. arXiv:hep-ph/9504413, doi:10.1103/PhysRevLett.75.3394.

[64] M. Faisst, J. H. Kuhn, T. Seidensticker, O. Veretin, Three loop top quark contributions to the ρ parameter, Nuclear Physics B 665 (2003) 649–662. arXiv:hep-ph/0302275, doi:10.1016/S0550-3213(03)00450-4.

[65] L. Chen, A. Freitas, GRIFFIN: A C++ library for electroweak radiative corrections in fermion scattering and decay processes, SciPost Physics Codebases 2023 (2023) 18. arXiv:2211.16272, doi:10.21468/SciPostPhysCodeb.18.

[66] R. Barate et al., Search for the Standard Model Higgs boson at LEP, Physics Letters B 565 (2003) 61–75. arXiv:hep-ex/0306033, doi:10.1016/S0370-2693(03)00614-2.

[67] J. F. de Troconiz, F. J. Yndurain, Calculation of α¯QED on the Z, Physical Review D 65 (2002) 093002. arXiv:hep-ph/0107318, doi:10.1103/PhysRevD.65.093002.

[68] Precision Electroweak Measurements and Constraints on the Standard Model, Dec. 2010. arXiv: 1012.2367.

[69] S. L. Glashow, Partial symmetries of weak interactions, Nuclear Physics 22 (1961) 579–588. doi:10.1016/0029-5582(61)90469-2.

[70] S. Weinberg, A model of leptons, Physical Review Letters 19 (1967) 1264–1266. doi:10.1103/PhysRevLett.19.1264.

[71] A. Salam, Weak and electromagnetic interactions, Conference Proceedings C 680519 (1968) 367–377. doi:10.1142/9789812795915_0034.

[72] D. Albaneo, Combined Preliminary Data on Z Parameters from the LEP Experiments and Constraints on the Standard Model, in: 27th International Conference on High-Energy Physics, 1994.

[73] A Combination of Preliminary LEP Electroweak Measurements and Constraints on the Standard Model, in: 17th International Symposium on Lepton Photon Interactions, 1995.

[74] D. Abbaneo et al., A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Jan. 2000.

[75] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Feb. 2001. arXiv:hep-ex/0103048.

[76] D. Abbaneo et al., A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2001. arXiv:hep-ex/0112021.

[77] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2003. arXiv:hep-ex/0312023.

[78] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2004. arXiv:hep-ex/0412015.

[79] A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Nov. 2005. arXiv:hep-ex/0511027.

[80] J. Alcaraz et al., A Combination of Preliminary Electroweak Measurements and Constraints on the Standard Model, Dec. 2006. arXiv:hep-ex/0612034.

[81] J. Alcaraz et al., Precision Electroweak Measurements and Constraints on the Standard Model, Dec. 2007. arXiv:0712.0929.

[82] Precision Electroweak Measurements and Constraints on the Standard Model, Nov. 2008. arXiv: 0811.4682.

[83] Precision Electroweak Measurements and Constraints on the Standard Model, Nov. 2009. arXiv: 0911.2604.

[84] J. Abdallah et al., Measurement of the tau lepton polarisation at LEP2, Physics Letters B 659 (2008) 65–73. arXiv:0710.1368, doi:10.1016/j.physletb.2007.10.022.

[85] S. Navas et al., Review of particle physics, Physical Review D 110 (3) (2024) 030001. doi: 10.1103/PhysRevD.110.030001.

[86] H. Baer et al., The International Linear Collider Technical Design Report: Vol. 2 — Physics, Jun. 2013. arXiv:1306.6352.

[87] A. Abada et al., FCC-ee: The lepton collider: Future Circular Collider Conceptual Design Report, Vol. 2, European Physical Journal: Special Topics 228 (2) (2019) 261–623. doi:10.1140/epjst/e2019-900045-4.

[88] Physics and Detectors at CLIC: CLIC Conceptual Design Report, Feb. 2012. arXiv:1202.5940, doi:10.5170/CERN-2012-003.

[89] M. Dong et al., CEPC Conceptual Design Report: Vol. 2 — Physics and Detector, Nov. 2018. arXiv:1811.10545.

[90] A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann (Eds.), Theory for the FCC-ee: Report on the 11th FCC-ee Workshop: Theory and Experiments, Vol. 3/2020 of CERN Yellow Reports: Monographs, CERN, Geneva, 2019. arXiv:1905.05078, doi:10.23731/CYRM-2020-003.

[91] A. Blondel et al., Standard Model Theory for the FCC-ee Tera-Z Stage, in: Mini Workshop on Precision EW and QCD Calculations for the FCC Studies: Methods and Techniques, Vol. 3/2019 of CERN Yellow Reports: Monographs, CERN, Geneva, 2018. arXiv:1809.01830, doi:10.23731/CYRM-2019-003.

[92] A. Freitas et al., Theoretical Uncertainties for Electroweak and Higgs-Boson Precision Measurements at FCC-ee, Jun. 2019. arXiv:1906.05379.

[93] S. G. Bondarenko, A. A. Sapronov, NLO EW and QCD proton–proton cross section calculations with MCSANC-v1.01, Computer Physics Communications 184 (2013) 2343–2350. arXiv:1301. 3687, doi:10.1016/j.cpc.2013.05.010.

[94] A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, U. Klein, V. Kolesnikov, L. Rumyantsev, R. Sadykov, A. Sapronov, Update of the MCSANC Monte Carlo integrator, v. 1.20, Journal of Experimental and Theoretical Physics Letters 103 (2) (2016) 131–136. arXiv: 1509.03052, doi:10.1134/S0021364016020041.

[95] S. G. Bondarenko, L. V. Kalinovskaya, A. A. Sapronov, Monte-Carlo tool SANCphot for polarized γγ collision simulation, Computer Physics Communications 294 (2024) 108929. arXiv:2201.04350, doi:10.1016/j.cpc.2023.108929.

[96] R. Sadykov, V. Yermolchyk, Polarized NLO EW e+e− cross section calculations with ReneSANCe-v1.0.0, Computer Physics Communications 256 (2020) 107445. arXiv:2001.10755, doi:10.1016/j.cpc.2020.107445.

[97] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, Hadron–hadron collision mode in ReneSANCe-v1.3.0, Computer Physics Communications 285 (2023) 108646. arXiv:2207.04332, doi:10.1016/j.cpc.2022.108646.

[98] D. Yu. Bardin, G. Passarino, The Standard Model in the Making: Precision Study of the Electroweak Interactions, Clarendon Press, Oxford, 1999.

[99] A. Andonov, A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, G. Nanava, W. von Schlippe, SANCscope — v.1.00, Computer Physics Communications 174 (2006) 481–517, [Erratum: Comput. Phys. Commun. 177 (2007) 623–624]. arXiv:hep-ph/0411186, doi:10.1016/j.cpc.2005.12.006.

[100] D. Bardin, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, A. Arbuzov, R. Sadykov, S. Bondarenko, One loop electroweak radiative corrections to polarized Bhabha scattering, Physical Review D 98 (1) (2018) 013001. arXiv:1801.00125, doi:10.1103/PhysRevD.98.013001.

[101] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, One-loop electroweak radiative corrections to lepton pair production in polarized electron–positron collisions, Physical Review D 102 (3) (2020) 033004. arXiv:2005.04748, doi:10.1103/PhysRevD.102.033004.

[102] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, A. Kampf, L. Rumyantsev, R. Sadykov, V. Yermolchyk, One-loop radiative corrections to photon-pair production in polarized positron–electron annihilation, Physical Review D 107 (7) (2023) 073003. arXiv:2211.11467, doi:10.1103/ PhysRevD.107.073003.

[103] S. Bondarenko, Y. Dydyshka, L. Kalinovskaya, L. Rumyantsev, R. Sadykov, V. Yermolchyk, One-loop electroweak radiative corrections to polarized e+e− → ZH, Physical Review D 100 (7)

(2019) 073002. arXiv:1812.10965, doi:10.1103/PhysRevD.100.073002.

[104] A. Arbuzov, S. Bondarenko, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, Electroweak effects in e+e− → ZH process, Symmetry 13 (7) (2021) 1256. doi:10.3390/sym13071256.

[105] S. G. Bondarenko, E. V. Dydyshka, L. V. Kalinovskaya, L. A. Rumyantsev, R. R. Sadykov, V. L. Ermol’chik, One-loop electroweak radiative corrections to polarized e+e− → γZ process, Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki 119 (2) (2024) 75–81.

[106] A. Arbuzov, S. Bondarenko, L. Kalinovskaya, R. Sadykov, V. Yermolchyk, Electroweak radiative corrections to polarized top quark pair production, Physical Review D 107 (11) (2023) 113006. arXiv:2305.09569, doi:10.1103/PhysRevD.107.113006.

[107] M. Benedikt et al., Future Circular Collider Feasibility Study Report: Vol. 1 — Physics, Experiments, Detectors, Apr. 2025. arXiv:2505.00272, doi:10.17181/CERN.9DKX.TDH9.

[108] R. E. Gerasimov, P. A. Krachkov, R. N. Lee, Electron–positron annihilation into heavy leptons at two loops, Journal of High Energy Physics 08 (2025) 118. arXiv:2503.09245, doi:10.1007/ JHEP08(2025)118.

[109] R. N. Lee, V. A. Stotsky, Master integrals for e+e − → 2γ process at large energies and angles,

Journal of High Energy Physics 12 (2024) 106. arXiv:2410.03336, doi:10.1007/JHEP12(2024) 106.

[110] T. Takahashi et al., Light-by-light scattering in a photon–photon collider, The European Physical

Journal C 78 (11) (2018) 893, [Erratum: Eur. Phys. J. C 82 (2022) 404]. arXiv:1807.00101,

doi:10.1140/epjc/s10052-018-6364-1.

[111] P. Chen, G. Horton-Smith, T. Ohgaki, A. W. Weidemann, K. Yokoya, CAIN: Conglomerat d’ABEL et d’interactions nonlineaires, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 355 (1995) 107–110. doi:10.1016/0168-9002(94)01186-9.

[112] K. Yokoya, User Manual of CAIN, Version 2.42, User Manual of CAIN, Version 2.40, 2018.

doi:{http://ilc.kek.jp/yokoya/CAIN}.

[113] M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, Journal of High Energy Physics 08 (2013) 106. arXiv:1306.4644, doi:10.1007/JHEP08(2013)106.

[114] J. Ellis, T. You, Sensitivities of prospective future e+e− colliders to decoupled new physics, Journal of High Energy Physics 03 (2016) 089. arXiv:1510.04561, doi:10.1007/JHEP03(2016) 089.

[115] A. Hayrapetyan et al. (CMS Collab.), Measurement of the τ lepton polarization in Z boson decays in proton–proton collisions at √s = 13 TeV, Journal of High Energy Physics 01 (2024) 101. arXiv:2309.12408, doi:10.1007/JHEP01(2024)101.

[116] Z. Zhao, S. Yang, M. Ruan, M. Liu, L. Han, Measurement of the effective weak mixing angle at the CEPC*, Chinese Physics C 47 (12) (2023) 123002. arXiv:2204.09921, doi:10.1088/1674-1137/acf91f.

[117] J. Blümlein, A. De Freitas, C. G. Raab, K. Schönwald, The O(α2) initial state QED corrections to e+e− annihilation to a neutral vector boson revisited, Physics Letters B 791 (2019) 206–209. arXiv:1901.08018, doi:10.1016/j.physletb.2019.02.038.

[118] A. B. Arbuzov, U. E. Voznaya, Higher-order NLO initial state QED radiative corrections to e+e− annihilation revisited, Physical Review D 109 (11) (2024) 113002. arXiv:2405.03443, doi:10.1103/PhysRevD.109.113002.