Аннотация
В статье представлен обзор исследований, проводимых с начала 1970-х годов в Объединенном институте ядерных исследований в Дубне и направленных на создание сверхпроводящих (СП) магнитов для ускорителей заряженных частиц. Эти исследования позволили построить первый в мире СП быстроциклирующий тяжело-ионный синхротрон — Нуклотрон, магниты для синхротрона SIS100 проекта FAIR, СП магнитные системы ускорителя и коллайдера комплекса NICA. Также была разработана СП обмотка для магнита медицинского циклотрона MSC-230 для протонной терапии, модельный магнит для проекта китайского коллайдера HIAF с рекордной (до 10 Тл/с) скоростью изменения магнитного поля, накопитель энергии емкостью 3 МДж на основе высокотемпературного сверхпроводника (ВТСП) и концепция магнитов для Нового Нуклотрона, изготовленных из ВТСП материала для работы с температурой обмотки около 50 К.
Библиографические ссылки
[2] A. Baldin, et al., Nuclotron status report, IEEE Transactions on Nuclear Science NS30 (4) (1983)3247–3249; 1983 Particle Accelerator Conference: Accelerator Engineering and Technology, SantaFe, New Mexico, 1983.
[3] H. G. Khodzhibagiyan, A. A. Smirnov, The concept of a superconducting magnet system for theNuclotron, in: Proceedings of the 12th International Cryogenic Engineering Conference, ICEC12,Southampton, 1988, pp. 841–844.
[4] A. M. Baldin, et al., Superconducting fast cycling magnets of the Nuclotron, IEEE Transactionson Applied Superconductivity 5 (1995) 875–877.doi:10.1109/77.402687.
[5] H. G. Khodzhibagiyan, A. D. Kovalenko, E. Fischer, Some aspects of cable design for fast cyclingsuperconducting synchrotron magnets, IEEE Transactions on Applied Superconductivity 14 (2)(2004).doi:10.1109/TASC.2004.830386.
[6] H. Khodzhibagiyan, et al., From Nuclotron synchrotron to NICA collider — common cryogenicconcept for various superconducting magnets, their design specifics and test results, IEEE Trans-actions on Applied Superconductivity 34 (5) (2024).doi:10.1109/TASC.2024.3368993.
[7] G. Moritz, C. Muehle, M. Anerella, A. Ghosh, W. Sampson, P. Wanderer, E. Willen, N. Agapov,H. Khodzhibagiyan, A. Kovalenko, W. V. Hassenzahl, M. N. Wilson, Towards fast-pulsed super-conducting synchrotron magnets, in: Proceedings of the 2001 Particle Accelerator Conference,Chicago, 2001, pp. 211–213.
[8] E. Fischer, et al., Status of the superconducting magnets for the SIS100 synchrotron and theNICA project, IEEE Transactions on Applied Superconductivity 23 (3) (2013) 6397567.doi:10.1109/TASC.2012.2232952.
[9] E. Fischer, P. Akishin, H. Khodzhibagiyan, A. Kovalenko, G. Kuznetsov, G. Moritz, A. Smirnov,Minimization of AC power losses in fast cycling window frame 2 T superferric magnets with theyoke at 4.5 K, Report at ASC 2004, Jacksonville, Florida, USA, Oct. 2004.
[10] A. Kovalenko, N. Agapov, E. Fischer, H. Khodzhibagiyan, G. Kuznetsov, G. Moritz, A. Smirnov,New results on minimizing AC power losses in a fast cycling 2 T superferric dipole with a coldyoke, IEEE Transactions on Applied Superconductivity 16 (2) (2006) 338–341.doi:10.1109/TASC.2006.873341.
[11] A. Kovalenko, N. Agapov, A. Alfeev, H. Khodzhibagiyan, G. Kuznetsov, V. Seleznev,A. Shabunov, A. Starikov, E. Fischer, G. Moritz, C. Muehle, P. Spiller, A. Kalimov, Full lengthsuperferric dipole and quadrupole prototype magnets for the SIS100 at GSI: Status of the designand manufacturing, in: Proceedings of EPAC 06, Edinburgh, GB, 2006, pp. 2583–2585.
[12] E. Fischer, A. Alfeev, A. Kalimov, H. Khodzhibagiyan, A. Kovalenko, G. Kuznetsov, G. Moritz,C. Muehle, V. Seleznev, Status of the design of a full length superferric dipole and quadrupolemagnets for the FAIR SIS100 synchrotron, IEEE Transactions on Applied Superconductivity17 (2) (2007) 1078–1082; ASC 06, Seattle, USA, Sep. 2006.doi:10.1109/TASC.2007.897278.
[13] H. G. Khodzhibagiyan, et al., Production and test status of the superconducting magnets forthe NICA project and the SIS100 synchrotron, IEEE Transactions on Applied Superconductivity29 (5) (2019) 4100806.doi:10.1109/TASC.2019.2901591.
[14] A. D. Kovalenko, N. N. Agapov, V. G. Aksenov, I. E. Karpunina, H. G. Khodzhibagiyan, G. L.Kuznetsov, M. A. Voevodin, G. Moritz, E. Fisher, G. Hess, C. Muehle, Progress in the design andstudy of a superferric dipole magnet for the GSI fast-pulsed synchrotron SIS100, IEEE Transac-tions on Applied Superconductivity 14 (2) (2004) 321–324.doi:10.1109/TASC.2004.829112.
[15] G. Moritz, E. Fischer, H. Khodzhibagiyan, A. Kovalenko, A. Nyilas, R. Burgmer, D. Krischel,P. Schmidt, W. G ̈artner, M. Gehring, W. Walter, A. Wessner, Mechanical coil structure of theFAIR SIS100 magnets, IEEE Transactions on Applied Superconductivity 17 (2) (2007) 1169–1172;ASC 06, Seattle, USA, Sep. 2006.doi:10.1109/TASC.2007.897263.
[16] Nuclotron-based ion collider facility,https://nica.jinr.ru.
[17] H. Khodzhibagiyan, et al., Cryogenic test of the full-size superconducting magnet for the Boostersynchrotron of the NICA project, Physics Procedia 36 (2012) 1083–1086.doi:10.1016/j.phpro.2012.06.110.
[18] H. Khodzhibagiyan, et al., Thermodynamic characteristics of doublets of quadrupole magnets for the Booster synchrotron at the NICA accelerator complex, Physics of Particles and Nuclei Letters19 (6) (2022) 808–813.doi:10.1134/S1547477122060243.
[19] H. Khodzhibagiyan, et al., Superconducting magnets for the NICA accelerator collider project,IEEE Transactions on Applied Superconductivity 26 (4) (2016) 7414419.doi:10.1109/TASC.2016.2532363.
[20] A. V. Butenko, et al., First experiments with accelerated ion beams in the Booster of the NICAaccelerator complex, in: Proceedings of IPAC2021, Campinas, SP, Brazil, 2021.doi:10.18429/JACoW-IPAC2021-MOPAB025.
[21] A. V. Butenko, et al., NICA Booster: Superconducting synchrotron of a new generation, Physics— Uspekhi 66 (2023) 195–212. https://doi.org/10.3367/UFNe.2021.12.039138.
[22] H. Khodzhibagiyan, et al., An approach to development of the HTS magnet for SMES at JINR,Journal of Physics: Conference Series 1590 (2020) 012057. IOP Publishing.doi:10.1088/1742-6596/1590/1/012057.
[23] Recent advances in SuperOx 2G HTS wire manufacturing facilities, performance and customiza-tion, Report at ASC2020, Louisville, CO, USA, 2020.
[24] H. Khodzhibagiyan, V. Kekelidze, G. Kuznetsov, G. Trubnikov, et al., Quadrupole supercon-ducting model magnet for upgrade of the Nuclotron synchrotron, IEEE Transactions on AppliedSuperconductivity 32 (6) (2022) 1–1.doi:10.1109/TASC.2022.3151579.
[25] D. Abin, M. Osipov, S. Pokrovskii, H. Khodzhibagiyan, et al., Local quality control of helicalCORC cable winding, IEEE Transactions on Applied Superconductivity 32 (4) (2022) 1–1.doi:10.1109/TASC.2022.3159276.
[26] J. Zheng, Y. Cheng, M. Li, M. Novikov, et al., Engineering design of 1 MJ HTS SMES system withkA-level current capacity for NICA accelerator, IEEE Transactions on Applied Superconductivity99 (2024) 1–5.doi:10.1109/TASC.2024.3446286.
[27] H. Khodzhibagiyan, et al., Quadrupole superconducting model for update of the Nuclotronsynchrotron, IEEE Transactions on Applied Superconductivity 32 (6) (2022) 4003704.doi:10.1109/TASC.2022.3151579.
[28] M. S. Novikov, et al., Development of technologies for radiation pinning centers in 2nd generationHTS tapes for magnets of the New Nuclotron with nitrogen cooling, in: Proceedings of the LaPlas-2022 Conference, Moscow, 2022.
[29] G. G. Khodjibagiyan, M. S. Novikov, E. Z. Fisher, A. V. Shemchuk, The concept of the HTSmagnetic system of the New Nuclotron synchrotron, Particles and Nuclei, Letters 21 (1) (2024)68–75.
[30] A. V. Shemchuk, et al., HTS prototype of the quadrupole magnet of the New Nuclotron, in:Proceedings of the LaPlas-2022 Conference, Moscow, 2022.

